Different species in a given site or population of a given species in different sites may fluctuate in synchrony if they are affected similarly by factors such as spatially autocorrelated climate, predation, or by dispersal between populations of one species. We used county wise time series of hunting bag records of four Norwegian tetraonid species covering 24 years to examine patterns of interspecific and intraspecific synchrony. We estimated synchrony at three spatial scales; national, regional (consisting of counties with similar climate), and county level. Ecologically related species with overlapping distributions exhibited strong synchrony across Norway, but there was much variation between the different regions and counties. Regions with a long coastline to both the North Sea and the Norwegian Ocean exhibited an overall stronger synchrony than those consisting of more continental areas. Intraspecific synchrony was generally low across all counties, but stronger synchrony between counties within regions defined by climatic conditions. Synchrony was negatively related to distance between populations in three of four species. Only the synchrony in willow ptarmigan showed a clear negative relationship with distance, while the other species had both strong positive and negative correlations at short distances. Strong interspecific synchrony between some species pairs within regions and weak intraspecific synchrony across counties within regions suggest a stronger synchronizing effect from environmental factors such as weather or predation and less effect from dispersal. Our results suggest that the complete tetraonid community is structured by environmental factors affecting the different species similarly and causes widespread interspecific synchrony. Local factors affecting the population dynamics nevertheless frequently forces neighbouring populations out of phase.
Recruitment of juveniles is important for the size of the next year's breeding population in many bird species. Climate variability and predation may affect recruitment rates, and when these factors are spatially correlated, recruitment rates in spatially separated populations of a species may be synchronized. We used production data from an extensive survey of Willow Ptarmigan from 2000 to 2011 to investigate spatial synchrony in recruitment of juveniles within and among mountain region populations. In addition, we assessed the effects of predation and large-as well as local-scale climate on recruitment of juveniles. Recruitment was synchronized both within and among mountain regions, but the mean spatial correlation was strongest among mountain regions. This may be caused by small-scale factors such as predation or habitat structure, or be a result of sampling variation, which may be large at small spatial scales. The strong synchrony suggests that populations are subject to similar environmental forces. We used mixed effect models at the survey area and mountain region scales to assess the effect of rodent abundance (a proxy for predation rates) and local and regional climate during the breeding season on the recruitment of juvenile birds. Model selection based on AICc revealed that the most parsimonious models at both spatial scales included positive effects of rodent abundance and the North Atlantic oscillation during May, June and July (NAO MJJ ). The NAO MJJ index was positively related to temperature and precipitation during the pre-incubation period; temperature during the incubation period and positive NAO MJJ values accelerate plant growth. A comparison of the relative effects of NAO MJJ and rodent abundance showed that variation in NAO MJJ had greatest impact on the recruitment of juveniles. This suggests that the climate effect was stronger than the effect of rodent abundance in our study populations. This is in contrast to previous studies on Willow Ptarmigan, but may be explained by the collapse in rodent cycles since the 1990s. If Willow Ptarmigan dynamics in the past were linked to the rodent cycle through a shared predator regime, this link may have been weakened when rodent cycles became more irregular, resulting in a more pronounced effect of environmental perturbation on the dynamics of ptarmigan.
15According to classic theory, species interactions are less important than climatic variation for species ' 16 population dynamics and distributions in climatically harsh regions compared with more climatically 17 benign regions. In boreal ecosystems, the cyclic dynamics of rodents strongly affect many other 18 species, including ground-nesting birds. According to the 'alternative prey hypothesis' (APH), high 19 rodent densities positively affect the abundance of ground-nesting birds due to predator-mediated 20 interactions. We analysed a spatiotemporal dataset of willow ptarmigan (Lagopus lagopus) and 21 rodents to examine how the role of predator-mediated interactions changes along a climatic 22 harshness gradient in comparison with climatic variation. Ptarmigan and rodent data were collected 23 during a national program of line-transect sampling across Norway during 2007-2017. We build a 24 hierarchical Bayesian model to estimate the sensitivity of ptarmigan populations to interannual 25 variation in climate and rodent occurrence. Ptarmigan abundance was positively linked with rodent 26 occurrence, consistent with the APH. Moreover, we found that both rodent dynamics and temporal 27 climatic variation had stronger effects on ptarmigan in colder regions. Our study highlights how 28 species interactions play an important role for the population dynamics of species at higher latitudes 29 and suggest that they become even more important in the most climatically harsh regions. 30 31
In heterogeneous landscapes individuals select among several habitat patches. The fitness rewards of these choices are assumed to play an important role in the distribution of individuals across landscapes. Individuals can either use environmental cues to directly assess the quality of breeding sites, or rely on social cues to guide the settlement decision. We estimated the density of adult birds and per capita reproductive success of willow ptarmigan over 5-15 years in 42 survey areas, nested within 5 spatially separated populations in south-central Norway. Our aims were to (1) examine spatial and temporal patterns of variation in densities of adult birds (i.e., the breeding densities) and reproductive success (juveniles/pair) measured in autumn and (2) evaluate which habitat distribution model best described the distribution of willow ptarmigan across heterogeneous mountain landscapes. Variation in density of adult birds was primarily attributable to variation between survey areas which could arise from spatial heterogeneity in adult survival or as a consequence of spacing behavior of juveniles during the settlement stage. In contrast, reproductive success was more variable between years and did not vary consistently between survey areas once year effects were accounted for. The lack of any relationship between the density of adult birds and reproductive success supported the predictions of an ideal free distribution (IFD), implying that within years, the mean reproductive success was approximately equal across survey areas. However, analysis based on Taylor's power law (i.e., the relationship between logarithms of spatial variance and mean density of adult birds) suggested that aggregation was stronger than expected under IFD. This implies that the relative change in density of adult birds was larger in areas with high mean densities than in areas with low densities. The exact mechanisms causing this statistical pattern are unclear, but based on the breeding biology of willow ptarmigan we suggest that yearlings are attracted to areas of high densities during the settlement period in spring. Our study was conducted during a period of low overall density and we suggest that this pattern might be particular to such situations. This implies that the presence of conspecifics might represent a cue signaling high adult survival and thus high habitat quality.
According to classic theory, species' population dynamics and distributions are less influenced by species interactions under harsh climatic conditions compared to under more benign climatic conditions. In alpine and boreal ecosystems in Fennoscandia, the cyclic dynamics of rodents strongly affect many other species, including ground-nesting birds such as ptarmigan. According to the ‘alternative prey hypothesis’ (APH), the densities of ground-nesting birds and rodents are positively associated due to predator–prey dynamics and prey-switching. However, it remains unclear how the strength of these predator-mediated interactions change along a climatic harshness gradient in comparison with the effects of climatic variation. We built a hierarchical Bayesian model to estimate the sensitivity of ptarmigan populations to interannual variation in climate and rodent occurrence across Norway during 2007–2017. Ptarmigan abundance was positively linked with rodent occurrence, consistent with the APH. Moreover, we found that the link between ptarmigan abundance and rodent dynamics was strongest in colder regions. Our study highlights how species interactions play an important role in population dynamics of species at high latitudes and suggests that they can become even more important in the most climatically harsh regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.