With the increasing demand for high bandwidth wireless communication systems, and with a congested spectrum in the sub-6 GHz frequency bands, researchers have been looking into exploration of millimeter wave (mmWave) and sub-terahertz (sub-THz) frequency bands. Channel modeling is essential for system design and performance evaluation of new wireless communication systems. Accurate channel modeling relies on reliable measured channel data, which is collected by high-fidelity channel sounders. Furthermore, it is of importance to understand to which extent channel parameters are frequency dependent in typical deployment scenario (including both indoor short-range and outdoor long-range scenarios). To achieve this purpose, this paper presents a state-of-art long-range 28 GHz and 300 GHz VNA-based channel sounder using optical cable solutions, which can support a measurement range up to 300 m and 600 m in principle, respectively. The design, development and validation of the long-range channel sounders at mmWave and sub-THz bands are reported, with a focus on their system principle, link budget, and back-to-back measurements. Furthermore, a measurement campaign in an indoor corridor is performed using the developed 300 GHz system and 28 GHz channel sounding systems. Both measured channels at the 28 GHz and 300 GHz channels are shown to be highly sparse and specular. A higher number of Multi Path Components (MPC) are observed for the 28 GHz system, while the same main MPC are observed for both systems.
The D-band among all sub-THz and THz radio frequencies is foreseen as the first one to be utilized for communications. Such high frequency communication links are particularly susceptible to shadowing events, e.g., caused by the human body. In this paper we present results of a D-band channel measurement campaign, which was conducted to characterize the impact of human blockage, with a focus on the excess attenuation and temporal evolution of human body shadowing. The attenuation caused by single-person blockers with different physical characteristics was measured with human frontal and lateral crossing the line-of-sight link. Predicting results of two knife-edge diffraction models are compared with the measurement curves, which both underestimate the attenuation levels especially for the volunteer with larger size. Meanwhile, we quantify the deep fading duration varying with the fading depth, which helps to optimize the beam alignment strategy in order to maintain the sufficient signal-to-noise ratio when the dominant path is heavily obstructed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.