In 1990, a skull from a morphologically unusual Monodontid was found in West Greenland and collected for the Natural History Museum of Denmark, University of Copenhagen. From its intermediate morphology, the skull was hypothesized to be a beluga/narwhal hybrid. If confirmed, the specimen would, to our knowledge, represent the sole evidence of hybridization between the only two toothed whale species endemic to the Arctic. Here we present genome-wide DNA sequence data from the specimen and investigate its origin using a genomic reference panel of eight belugas and eight narwhals. Our analyses reveal that the specimen is a male, first-generation hybrid between a female narwhal and a male beluga. We use stable carbon and nitrogen isotope analysis to investigate the dietary niche of the hybrid and find a higher δ 13 C value than in both belugas and narwhals, suggesting a foraging strategy unlike either parental species. These results further our understanding of the interaction between belugas and narwhals, and underscore the importance of natural history collections in monitoring changes in biodiversity. In addition, our study exemplifies how recent major advances in population genomic analyses using genotype likelihoods can provide key biological and ecological insights from low-coverage data (down to 0.05x).
The Arctic is warming at an unprecedented rate, with unknown consequences for endemic fauna. However, Earth has experienced severe climatic oscillations in the past, and understanding how species responded to them might provide insight into their resilience to near-future climatic predictions. Little is known about the responses of Arctic marine mammals to past climatic shifts, but narwhals ( Monodon monoceros ) are considered one of the endemic Arctic species most vulnerable to environmental change. Here, we analyse 121 complete mitochondrial genomes from narwhals sampled across their range and use them in combination with species distribution models to elucidate the influence of past and ongoing climatic shifts on their population structure and demographic history. We find low levels of genetic diversity and limited geographic structuring of genetic clades. We show that narwhals experienced a long-term low effective population size, which increased after the Last Glacial Maximum, when the amount of suitable habitat expanded. Similar post-glacial habitat release has been a key driver of population size expansion of other polar marine predators. Our analyses indicate that habitat availability has been critical to the success of narwhals, raising concerns for their fate in an increasingly warming Arctic.
BackgroundDeciphering the mechanisms governing population genetic divergence and local adaptation across heterogeneous environments is a central theme in marine ecology and conservation. While population divergence and ecological adaptive potential are classically viewed at the genetic level, it has recently been argued that their microbiomes may also contribute to population genetic divergence. We explored whether this might be plausible along the well-described environmental gradient of the Baltic Sea in two species of sand lance (Ammodytes tobianus and Hyperoplus lanceolatus). Specifically, we assessed both their population genetic and gut microbial composition variation and investigated not only which environmental parameters correlate with the observed variation, but whether host genome also correlates with microbiome variation.ResultsWe found a clear genetic structure separating the high-salinity North Sea from the low-salinity Baltic Sea sand lances. The observed genetic divergence was not simply a function of isolation by distance, but correlated with environmental parameters, such as salinity, sea surface temperature, and, in the case of A. tobianus, possibly water microbiota. Furthermore, we detected two distinct genetic groups in Baltic A. tobianus that might represent sympatric spawning types. Investigation of possible drivers of gut microbiome composition variation revealed that host species identity was significantly correlated with the microbial community composition of the gut. A potential influence of host genetic factors on gut microbiome composition was further confirmed by the results of a constrained analysis of principal coordinates. The host genetic component was among the parameters that best explain observed variation in gut microbiome composition.ConclusionsOur findings have relevance for the population structure of two commercial species but also provide insights into potentially relevant genomic and microbial factors with regards to sand lance adaptation across the North Sea–Baltic Sea environmental gradient. Furthermore, our findings support the hypothesis that host genetics may play a role in regulating the gut microbiome at both the interspecific and intraspecific levels. As sequencing costs continue to drop, we anticipate that future studies that include full genome and microbiome sequencing will be able to explore the full relationship and its potential adaptive implications for these species.Electronic supplementary materialThe online version of this article (10.1186/s40168-018-0467-7) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.