In this work we present Reynolds-averaged Navier-Stokes (RANS) simulations of the flow past the constant design shape of a leading-edge inflatable (LEI) wing. The simulations are performed with a steady-state solver using a k − ω SST turbulence model, covering a range of Reynolds numbers between 105 ≤ and ≤ 15 × 106 and angles of attack varying between −5° and 24°, which are representative for operating conditions in airborne wind energy applications. The resulting force distributions are used to characterize the aerodynamic performance of the wing. We found that a γ − R ¯ e θ transition model is required to accurately predict the occurrence of stall up to at least Re= 3 × 106. The work highlights similarities with the flow past a two-dimensional LEI airfoil, in particular, with respect to flow transition and its influence on the aerodynamic properties. The computed values of the lift and drag coefficients agree well with in-flight measurements acquired during the traction phase of the LEI wing operation. The simulations show that the three-dimensional flow field exhibits a significant cross flow along the span of the wing.
We present a computational fluid dynamic analysis of boundary layer transition on leading edge inflatable kite airfoils used for airborne wind energy generation. Because of the operation in pumping cycles, the airfoil is generally subject to a wide range of Reynolds numbers. The analysis is based on the combination of the shear stress transport turbulence model with the γ−trueR˜eθt transition model, which can handle the laminar boundary layer and its transition to turbulence. The implementation of both models in OpenFOAM is described. We show a validation of the method for a sailwing (ie, a wing with a membrane) airfoil and an application to a leading edge inflatable kite airfoil. For the sailwing airfoil, the results computed with transition model agree well with the existing low Reynolds number experiment over the whole range of angles of attack. For the leading edge inflatable kite airfoil, the transition modeling has both favorable and unfavorable effects on the aerodynamics. On the one hand, the aerodynamics suffer from the laminar separation. But, on the other hand, the laminar boundary layer thickens slower than the turbulent counterpart, which, in combination with transition, delays the separation. The results also indicate that the aerodynamics of the kite airfoil could be improved by delaying the boundary layer transition during the traction phase and tripping the transition in the retraction phase.
In this paper we present a computational approach to simulate the steady-state aeroelastic deformation of a ram-air kite for airborne wind energy applications. The approach is based on a computational fluid dynamics (CFD) solver that is two-way coupled with a finite element (FE) solver. All components of the framework, including the meshing tools and the coupling library, are available in open source. The flow around the wing is described by the steady-state Reynolds-averaged Navier-Stokes (RANS) equations closed by an SST turbulence model. The FE model of the cellular membrane structure includes a wrinkling model and uses dynamic relaxation to find the deformed steady-state shape. Each simulation comprises four distinct steps: (1) generating the FE mesh of the design geometry, (2) pre-inflation of the wing, applying a uniform pressure on the inside, (3) generating the CFD mesh around the pre-inflated wing, and (4) activating the exterior flow and two-way coupling iterations. We first present results for the aerodynamics of the pre-inflated rigid ram-air wing and compare these to similar results for a leading edge inflatable (LEI) tube kite. Both wings are characterized by a high anhedral angle and low aspect ratio which induce spanwise flows that reduce the aerodynamic performance. The comparison shows a better performance for the LEI wing which can be attributed to its higher aspect ratio. The aeroelastic deformation of the ram-air wing further improves the aerodynamic performance, primarily because of the increasing camber which in turn increases the lift force. A competing aeroelastic phenomenon is the formation of bumps near the leading edge which increase the drag.
Abstract. Vortex-induced vibrations (VIVs) of wind turbine towers can be critical during the installation phase, when the rotor–nacelle assembly is not yet mounted on the tower. The present work uses numerical simulations to study VIVs of a two-dimensional cylinder in the transverse direction under flow conditions that are representative of wind turbine towers both from a fluid dynamics and structural dynamics perspective. First, the numerical tools and fluid–structure interaction algorithm are validated by considering a cylinder vibrating freely in a laminar flow. In that case, both the motion amplitude and frequency are shown to agree well with previous results from the literature. Second, VIVs are modelled in the turbulent supercritical regime using unsteady Reynolds-averaged Navier–Stokes equations. In this context, the turbulence model is first validated against flow past a stationary cylinder with a high Reynolds number. Then, the results from forced vibrations are validated against experimental results for a range of reduced frequencies and velocities. It is shown that the behaviour of the aerodynamic damping changes with the frequency ratio and can therefore lead to either self-limiting or self-exciting VIVs when the cylinder is left to freely vibrate. Finally, results are shown for a freely vibrating cylinder under realistic flow and structural conditions. While a clear lock-in map is identified and shows good agreement with published numerical and experimental data, the work also highlights the unsteady nature of the aerodynamic forces and motion under certain operating conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.