L-type amino acid transporter 1 (LAT1) is selectively expressed in the blood-brain barrier (BBB) and brain parenchyma. This transporter can facilitate brain delivery of neuroprotective agents and additionally give opportunity to minimize systemic exposure. Here, we investigated structure-pharmacokinetics relationship of five newly synthesized LAT1-utilizing prodrugs of the cyclooxygenase inhibitor, ketoprofen, in order to identify beneficial structural features of prodrugs to achieve both targeted brain delivery and low peripheral distribution of the parent drug. Besides, we studied whether pharmacokinetics and bioconversion of LAT1-utilizing prodrugs in vivo can be predicted in early stage experiments. To achieve these goals, we compared the in vitro brain uptake mechanism of prodrugs, rate of BBB permeation of compounds using in situ perfusion technique, their systemic pharmacokinetics and release of parent drug in brain, plasma and liver of mice. The results revealed that both excellent LAT1-binding ability and transporter utilization in vitro can be achieved by conjugating the parent drug to aromatic amino acids such as phenylalanine in comparison to prodrugs with an aliphatic promoiety. The presence of an aromatic promoiety directly conjugated in meta- or para-position to ketoprofen led to LAT1-utilizing prodrugs capable of delivering the parent drug into the brain with higher unbound brain to plasma ratio and reduced liver exposure than with ketoprofen itself. In contrast, the prodrugs with aliphatic promoieties and with an additional carbon attached between the parent drug and phenylalanine aromatic ring did not enhance brain delivery of ketoprofen. Furthermore, we have devised a screening strategy to pinpoint successful candidates at an early stage of development of LAT1-utilizing prodrugs. The screening approach demonstrated that early stage experiments could not replace pharmacokinetic studies in vivo due to the lack of prediction of the intra-brain/systemic distribution of the prodrugs as well as the release of the parent drug. Overall, this study provides essential knowledge required for improvement of targeted brain delivery and reduction of systemic exposure of drugs via the LAT1-mediated prodrug approach.
The blood-brain barrier efficiently controls the entry of drug molecules into the brain. We describe a feasible means to achieve carrier-mediated drug transport into the rat brain via the specific, large neutral amino acid transporter (LAT1) by conjugating a model compound to L-tyrosine. A hydrophilic drug, ketoprofen, that is not a substrate for LAT1 was chosen as a model compound. The mechanism and the kinetics of the brain uptake of the prodrug were determined with an in situ rat brain perfusion technique. The brain uptake of the prodrug was found to be concentration-dependent. In addition, a specific LAT1 inhibitor significantly decreased the brain uptake of the prodrug. Therefore, our results reveal for the first time that a drug-substrate conjugate is able to transport drugs into the brain via LAT1.
Central nervous system (CNS) drug delivery remains a major challenge, despite extensive efforts that have been made to develop novel strategies to overcome obstacles. Prodrugs are bioreversible derivatives of drug molecules that must undergo an enzymatic and/or chemical transformation in vivo to release the active parent drug, which subsequently exerts the desired pharmacological effect. In both drug discovery and drug development, prodrugs have become an established tool for improving physicochemical, biopharmaceutical or pharmacokinetic properties of pharmacologically active agents that overcome barriers to a drug's usefulness. This review provides insight into various prodrug strategies explored to date for CNS drug delivery, including lipophilic prodrugs, carrier- and receptor-mediated prodrug delivery systems, and gene-directed enzyme prodrug therapy.
Central nervous system (CNS) drug delivery is a major challenge in drug development because the blood-brain barrier (BBB) efficiently restricts the entry of drug molecules into the CNS at sufficient amounts. The brain uptake of poorly penetrating drugs could be improved by utilizing the transporters at the BBB with a prodrug approach. In this study, we designed four phenylalanine derivatives of valproic acid and studied their ability to utilize a large amino acid transporter 1 (LAT1) in CNS delivery with an aim to show that the meta-substituted phenylalanine prodrugs bind to LAT1 with a higher affinity compared with the affinity of the para-substituted derivatives. All of the prodrugs crossed the BBB carrier mediatedly via LAT1 in in situ rat brain perfusion. For the first time, we introduced a novel meta-substituted phenylalanine analogue promoiety which improved the LAT1 affinity 10-fold and more importantly the rat brain uptake of the prodrug 2-fold compared with those of the para-substituted derivatives. Therefore, we have characterized a new prodrug design idea for CNS drug delivery utilizing a transporter-mediated prodrug approach.
Our growing understanding of membrane transporters and their substrate specificity has opened a new avenue in the field of targeted drug delivery. The L-type amino acid transporter 1 (LAT1) has been one of the most extensively investigated transporters for delivering drugs across biological barriers. The transporter is predominantly expressed in cerebral cortex, blood-brain barrier, blood-retina barrier, testis, placenta, bone marrow and several types of cancer. Its physiological function is to mediate Na+ and pH independent exchange of essential amino acids: leucine, phenylalanine, etc. Several drugs and prodrugs designed as LAT1 substrates have been developed to improve targeted delivery into the brain and cancer cells. Thus, the anti-parkinsonian drug, L-Dopa, the anti-cancer drug, melphalan and the anti-epileptic drug gabapentin, all used in clinical practice, utilize LAT1 to reach their target site. These examples provide supporting evidence for the utility of the LAT1-mediated targeted delivery of the (pro)drug. This review comprehensively summarizes recent advances in LAT1-mediated targeted drug delivery. In addition, the use of LAT1 is critically evaluated and limitations of the approach are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.