SummaryBackgroundIn fly photoreceptors, light is focused onto a photosensitive waveguide, the rhabdomere, consisting of tens of thousands of microvilli. Each microvillus is capable of generating elementary responses, quantum bumps, in response to single photons using a stochastically operating phototransduction cascade. Whereas much is known about the cascade reactions, less is known about how the concerted action of the microvilli population encodes light changes into neural information and how the ultrastructure and biochemical machinery of photoreceptors of flies and other insects evolved in relation to the information sampling and processing they perform.ResultsWe generated biophysically realistic fly photoreceptor models, which accurately simulate the encoding of visual information. By comparing stochastic simulations with single cell recordings from Drosophila photoreceptors, we show how adaptive sampling by 30,000 microvilli captures the temporal structure of natural contrast changes. Following each bump, individual microvilli are rendered briefly (∼100–200 ms) refractory, thereby reducing quantum efficiency with increasing intensity. The refractory period opposes saturation, dynamically and stochastically adjusting availability of microvilli (bump production rate: sample rate), whereas intracellular calcium and voltage adapt bump amplitude and waveform (sample size). These adapting sampling principles result in robust encoding of natural light changes, which both approximates perceptual contrast constancy and enhances novel events under different light conditions, and predict information processing across a range of species with different visual ecologies.ConclusionsThese results clarify why fly photoreceptors are structured the way they are and function as they do, linking sensory information to sensory evolution and revealing benefits of stochasticity for neural information processing.
At the layer of first visual synapses, information from photoreceptors is processed and transmitted towards the brain. In fly compound eye, output from photoreceptors (R1–R6) that share the same visual field is pooled and transmitted via histaminergic synapses to two classes of interneuron, large monopolar cells (LMCs) and amacrine cells (ACs). The interneurons also feed back to photoreceptor terminals via numerous ligand-gated synapses, yet the significance of these connections has remained a mystery. We investigated the role of feedback synapses by comparing intracellular responses of photoreceptors and LMCs in wild-type Drosophila and in synaptic mutants, to light and current pulses and to naturalistic light stimuli. The recordings were further subjected to rigorous statistical and information-theoretical analysis. We show that the feedback synapses form a negative feedback loop that controls the speed and amplitude of photoreceptor responses and hence the quality of the transmitted signals. These results highlight the benefits of feedback synapses for neural information processing, and suggest that similar coding strategies could be used in other nervous systems.
Sensory neurons integrate information about the world, adapting their sampling to its changes. However, little is understood mechanistically how this primary encoding process, which ultimately limits perception, depends upon stimulus statistics. Here, we analyze this open question systematically by using intracellular recordings from fly (Drosophila melanogaster and Coenosia attenuata) photoreceptors and corresponding stochastic simulations from biophysically realistic photoreceptor models. Recordings show that photoreceptors can sample more information from naturalistic light intensity time series (NS) than from Gaussian white-noise (GWN), shuffled-NS or Gaussian-1/f stimuli; integrating larger responses with higher signal-to-noise ratio and encoding efficiency to large bursty contrast changes. Simulations reveal how a photoreceptor's information capture depends critically upon the stochastic refractoriness of its 30,000 sampling units (microvilli). In daylight, refractoriness sacrifices sensitivity to enhance intensity changes in neural image representations, with more and faster microvilli improving encoding. But for GWN and other stimuli, which lack longer dark contrasts of real-world intensity changes that reduce microvilli refractoriness, these performance gains are submaximal and energetically costly. These results provide mechanistic reasons why information sampling is more efficient for natural/naturalistic stimulation and novel insight into the operation, design, and evolution of signaling and code in sensory neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.