Improved objectively measured accessibility of different type of destinations and public transportation and land use mix were associated with increased physical activity. Creating new infrastructure for walking, cycling and public transportation could induce demand for walking and cycling. The results support the creation of compact and diverse residential areas and investments into infrastructure that encourage active modes of transportation.
BackgroundGiven the high global prevalence of physical inactivity, there is a need to design cities that support active modes of transportation. High density diverse neighborhoods with good access networks have been associated with enhanced walking and cycling, but there is a lack of large-scale longitudinal studies utilizing a life course perspective to model residential relocation trajectories. The objectives of the present longitudinal study were to model and visualize residential relocation trajectories between 31 and 46 years of age based on neighborhood density, mixed land use and access networks (DMA), and to assess neighborhood DMA as a predictor of self-reported regular walking and cycling and objectively measured physical activity.MethodsBased on data from the Northern Finland Birth Cohort 1966 (N = 5947), we used self-reported regular walking and cycling and objectively measured physical activity as outcome variables and objectively assessed neighborhood DMA as the main explanatory variable. We conducted sequence analysis to model residential relocation trajectories, and generalized linear mixed models and Fisher’s exact test were used to explore longitudinal associations between neighborhood DMA and physical activity.ResultsOver 80% of the participants lived in a neighborhood with the same level of neighborhood DMA during the follow-up. Relocation occurred more often from higher to lower DMA neighborhoods than reverse. Increased neighborhood DMA was associated with increased regular walking (OR 1.03; 95% CI: 1.00, 1.05; p = 0.023) and cycling (OR 1.17; 95% CI: 1.12, 1.23; p < 0.001). Residential relocation trajectory from lower to highest neighborhood DMA increased the odds of starting regular walking (OR 3.15; 95% CI: 1.50, 7.14; p = 0.001) and cycling (OR 2.63; 95% CI: 1.23, 5.79; p = 0.009) as compared to higher to lower neighborhood DMA trajectory.ConclusionsThe results strongly support the hypothesis that increasing urban DMA can enhance regular walking and cycling at population level and so improve public health. The findings have implications for zoning and transportation policies, favoring the creation of dense and diverse neighborhoods with good access networks to support regular walking and cycling.
Purpose: A data mining approach was applied to establish a multilevel hierarchy predicting physical activity (PA) behavior, and to methodologically identify the correlates of PA behavior. Methods: Cross-sectional data from the population-based Northern Finland Birth Cohort 1966 study, collected in the most recent follow-up at age 46, were used to create a hierarchy using the chi-square automatic interaction detection (CHAID) decision tree technique for predicting PA behavior. PA behavior is defined as active or inactive based on machine-learned activity profiles, which were previously created through a multidimensional (clustering) approach on continuous accelerometer-measured activity intensities in one week. The input variables (predictors) used for decision tree fitting consisted of individual, demographical, psychological, behavioral, environmental, and physical factors. Using generalized linear mixed models, we also analyzed how factors emerging from the model were associated with three PA metrics, including daily time (minutes per day) in sedentary (SED), light PA (LPA), and moderate-to-vigorous PA (MVPA), to assure the relative importance of methodologically identified factors. Results: Of the 4582 participants with valid accelerometer data at the latest follow-up, 2701 and 1881 had active and inactive profiles, respectively. We used a total of 168 factors as input variables to classify these two PA behaviors. Out of these 168 factors, the decision tree selected 36 factors of different domains from which 54 subgroups of participants were formed. The emerging factors from the model explained minutes per day in SED, LPA, and/or MVPA, including body fat percentage (SED:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.