Summary1. Stable isotope analyses coupled with mixing models are being used increasingly to evaluate ecological management issues and questions. Such applications of stable isotope analyses often require simultaneous carbon and nitrogen analyses from the same sample. Correction of the carbon isotope values to take account of the varying content of 13 C-depleted lipids is then frequently achieved by a lipid-normalization procedure using a model describing the relationship between change in δ 13 C following lipid removal and the original C:N ratio of a sample. 2. We evaluated the applicability of two widely used normalization models using empirical data for muscle tissue from a wide range of fish and for aquatic invertebrates. Neither normalization model proved satisfactory, and we present some modifications that greatly improve the fit of one of the models to the fish muscle data. For invertebrates we found no clear relationship between change in δ 13 C following lipid removal and the original C:N ratio. 3. We also examined the effect of lipid-normalization on the output of a mixing model designed to calculate the proportional contribution of prey items to the diet of a consumer. Mixing model output was greatly influenced by whether prey or consumer values alone or together were lipid-normalized and we urge caution in the interpretation of results from these models pending further experimental evidence. 4. Synthesis and applications . We describe a revised lipid-normalization model that should be applicable to a wide range of marine and freshwater fish species in studies applying stable isotope analyses to ecological management issues. However, we strongly advise against applying these kinds of lipid-normalization models to aquatic invertebrate data. The interpretation of outputs from mixing models is greatly influenced by whether the carbon isotope data have been lipid-normalized or not.
Apex predators play a key role in ecosystem stability across environments but their numbers in general are decreasing. By contrast, European catfish (Silurus glanis), the European freshwater apex predator, is on the increase. However, studies concerning apex predators in freshwaters are scarce in comparison to those in terrestrial and marine ecosystems. The present study combines stomach content and stable isotope analyses with diet preferences of catfish to reveal its impact on the ecosystem since stocking. Catfish niche width is extremely wide in comparison to the typical model predator, Northern pike (Esox lucius). Catfish and pike have different individual dietary specialization that results in different functional roles in coupling or compartmentalizing distinct food webs. The role of both species in the ecosystem is irreplaceable due to multiple predator effects. The impact of catfish is apparent across the entire aquatic ecosystem, but herbivores are the most affected ecological group. The key feature of catfish, and probably a common feature of apex predators in general, is utilization of several dietary strategies by individuals within a population: long-term generalism or specialization and also short-term specialization. Catfish, similar to other large-bodied apex predators, have two typical features: enormous generalism and adaptability to new prey sources.
Adaptive radiation is considered an important mechanism for the development of new species, but very little is known about the role of thermal adaptation during this process. Such adaptation should be especially important in poikilothermic animals that are often subjected to pronounced seasonal temperature variation that directly affects metabolic function. We conducted a preliminary study of individual lifetime thermal habitat use and respiration rates of four whitefish (Coregonus lavaretus (L.)) morphs (two pelagic, one littoral and one profundal) using stable carbon and oxygen isotope values of otolith carbonate. These morphs, two of which utilized pelagic habitats, one littoral and one profundal recently diverged via adaptive radiation to exploit different major niches in a deep and thermally stratified subarctic lake. We found evidence that the morphs used different thermal niches. The profundal morph had the most distinct thermal niche and consistently occupied the coldest thermal habitat of the lake, whereas differences were less pronounced among the shallow water pelagic and littoral morphs. Our results indicated ontogenetic shifts in thermal niches: juveniles of all whitefish morphs inhabited warmer ambient temperatures than adults. According to sampling of the otolith nucleus, hatching temperatures were higher for benthic compared to pelagic morphs. Estimated respiration rate was the lowest for benthivorous profundal morph, contrasting with the higher values estimated for the other morphs that inhabited shallower and warmer water. These preliminary results suggest that physiological adaptation to different thermal habitats shown by the sympatric morphs may play a significant role in maintaining or strengthening niche segregation and divergence in life-history traits, potentially contributing to reproductive isolation and incipient speciation.
The feeding ecology and ontogeny of a large size range of brown trout Salmo trutta in Lake Fyresvatnet, southern Norway, were examined by stomach content and stable isotope analyses. According to the stomach contents, the S. trutta changed their diet at c. 30 cm total length (L(T) ). The smaller size classes fed on benthic invertebrates and surface insects, whereas larger S. trutta (>30 cm) fed mainly on whitefish Coregonus lavaretus. A similar, but more gradual shift to piscivory in the size range 25-30 cm was found when using the stable isotope mixing model SIAR to reveal dietary ontogeny. The δ¹³C isotopic signature confirmed that S. trutta independent of size predominantly relied upon benthic energy sources, suggesting that the littoral zone was the primary foraging habitat for both invertebrate and piscivorous feeders. The δ¹⁵N values and trophic position increased with predator length, ranging from an average of 3·60 for small-sized S. trutta (<15 cm) to 4·15 for large-sized fish (>35 cm). The S. trutta exhibited a relatively slow growth rate during the predominant invertebrate feeding stages up to 7 years of age and 28 cm L(T) , whereas fish above this size and age displayed a rapid growth rate of 9-11 cm year⁻¹, demonstrating the profitability of piscivorous feeding.
The number of herbivores in populations of ectothermic vertebrates decreases with increasing latitude. At higher latitudes, fish consuming plant matter are exclusively omnivorous. We assess whether omnivorous fish readily shift to herbivory or whether animal prey is typically preferred. We address temperature as the key factor causing their absence at higher latitudes and discuss the potential poleward dispersion caused by climate changes. A controlled experiment illustrates that rudd (Scardinius erythrophthalmus) readily utilize plant matter at water temperatures above 20 °C and avoid its consumption below 20 °C. Field data support these results, showing that plant matter dominates rudd diets during the summer and is absent during the spring. Utilizing cellulose requires the enzyme cellulase, which is produced by microorganisms growing at temperatures of 15–42 °C. Water temperatures at higher latitudes do not reach 15 °C year-round; at our latitude of 50°N~150 days/year. Hence, the species richness of omnivorous fish decreases dramatically above 55° latitude. Our results provide support for the hypothesis that strict herbivorous specialists have developed only in the tropics. Temperatures below 15 °C, even for a short time period, inactivate cellulase and cause diet limitations for omnivorous fish. However, we may expect increases in herbivory at higher latitudes caused by climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.