Protecting portable devices is becoming more important, not only because of the value of the devices themselves, but for the value of the data in them and their capability for transactions, including m-commerce and m-banking. An unobtrusive and natural method for identifying the carrier of portable devices is presented. The method uses acceleration signals produced by sensors embedded in the portable device. When the user carries the device, the acceleration signal is compared with the stored template signal. The method consists of finding individual steps, normalizing and averaging them, aligning them with the template and computing cross-correlation, which is used as a measure of similarity. Equal Error Rate of 6.4% is achieved in tentative experiments with 36 test subjects.
This paper presents Kick Ass Kung-Fu, a martial arts game installation where the player fights virtual enemies with kicks and punches as well as acrobatic moves such as cartwheels. Using real-time image processing and computer vision, the video image of the user is embedded inside 3D graphics. Compared to previous work, our system uses a profile view and two displays, which allows an improved view of many martial arts techniques. We also explore exaggerated motion and dynamic slow-motion effects to transform the aesthetic of kung-fu movies into an interactive, embodied experience. The system is described and analyzed based on results from testing the game in a theater, in a television show, and in a user study with 46 martial arts practitioners.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.