A critical step in cancer growth and metastasis is the dissolution of the extracellular matrix surrounding the malignant tumor, which leads to tumor cell invasion and dissemination. Type I collagen degradation involves the initial action of collagenolytic matrix metalloproteinases (MMP-1, -8, and -13) activated by MMP-3 (stromelysin-1). The role of interactive matrix serine proteinases (MSPs), including tumor-associated trypsinogens, has been unclear in collagenolysis. Now, we provide evidence that the major isoenzyme of human tumor-associated trypsinogens, trypsin-2, can directly activate three collagenolytic proMMPs as well as proMMP-3. These proMMP activations are inhibited by tumor-associated trypsin inhibitor (TATI). Furthermore, we demonstrate that trypsin-2 efficiently degrades native soluble type I collagen, which can be inhibited by TATI. However, cell culture studies showed that trypsin-2 transfection into the HSC-3 cell line did not result in MMP-1, -3, -8, and -13 activation but affected MMP-3 and -8 production at the protein level. These findings indicate that human trypsin-2 can be regarded as a potent tumor-associated matrix serine protease capable of being the initial activator of the collagenolytic MMP activation network as well as directly attacking type I collagen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.