The most common cystic fibrosis (CF) mutation, ΔF508 in the nucleotide binding domain-1 (NBD1), impairs CFTR coupled-domain folding, plasma membrane (PM) expression, function and stability. VX-809, a promising investigational corrector of ΔF508-CFTR misprocessing, has limited clinical benefit and incompletely understood mechanism, hampering drug development. Based on the effect of second site suppressor mutations, robust ΔF508-CFTR correction likely requires stabilization of NBD1 and the membrane spanning domains (MSDs)-NBD1 interface, both established primary conformational defects. Here, we elucidated the molecular targets of available correctors; class-I stabilizes the NBD1-MSD1/2 interface, class-II targets NBD2, and only chemical chaperones, surrogates of class-III correctors, stabilize the human ΔF508-NBD1. While VX-809 can correct missense mutations primarily destabilizing the NBD1-MSD1/2 interface, functional PM expression of ΔF508-CFTR also requires compounds that counteract the NBD1 and NBD2 stability defects in CF bronchial epithelial cells and intestinal organoids. Thus, structure-guided corrector combination represents an effective approach for CF therapy.
Therapeutic efforts to restore biosynthetic processing of the cystic fibrosis transmembrane conductance regulator lacking the F508 residue (ΔF508CFTR) are hampered by ubiquitin-dependent lysosomal degradation of nonnative, rescued ΔF508CFTR from the plasma membrane. Here, functional small interfering RNA screens revealed the contribution of chaperones, cochaperones, and ubiquitin-conjugating and -ligating enzymes to the elimination of unfolded CFTR from the cell surface, as part of a peripheral protein quality-control system. Ubiquitination of nonnative CFTR was required for efficient internalization and lysosomal degradation. This peripheral protein quality-control mechanism probably participates in the preservation of cellular homeostasis by degrading damaged plasma membrane proteins that have escaped from the endoplasmic reticulum quality control or are generated by environmental stresses in situ.
The folding and misfolding mechanism of multi-domain proteins remains poorly understood. While thermodynamic instability of the first nucleotide binding domain (NBD1) of ΔF508-CFTR partly accounts for the mutant channel degradation in the endoplasmic reticulum and is considered as a drug target in cystic fibrosis, the link between NBD1 and CFTR misfolding remains unclear. Here we show that ΔF508 destabilizes NBD1 both thermodynamically and kinetically, but correction of either defect alone is insufficient to restore ΔF508-CFTR biogenesis. Instead, both ΔF508-NBD1 energetic and the NBD1-MSD2 (membrane spanning domain 2) interface stabilization are required for wild-type-like folding, processing and transport function, suggesting a synergistic role of NBD1 energetics and topology in CFTR coupled domain assembly. Identification of distinct structural deficiencies may explain the limited success of ΔF508-CFTR corrector molecules and suggests structure-based combination corrector therapies. These results may serve as a framework for understanding the mechanism of interface mutation in multi-domain membrane proteins.
Cystic fibrosis (CF) is caused by mutations in the CF transmembrane regulator (CFTR) that result in reduced anion conductance at the apical membrane of secretory epithelia. Treatment of CF patients carrying the G551D gating mutation with the potentiator VX-770 (ivacaftor) largely restores channel activity and has shown substantial clinical benefit. However, most CF patients carry the ΔF508 mutation, which impairs CFTR folding, processing, function, and stability. Studies in homozygous ΔF508 CF patients indicated little clinical benefit of monotherapy with the investigational corrector VX-809 (lumacaftor) or VX-770, whereas combination clinical trials show limited but significant improvements in lung function. We show that VX-770, as well as most other potentiators, reduces the correction efficacy of VX-809 and another investigational corrector, VX-661. To mimic the administration of VX-770 alone or in combination with VX-809, we examined its long-term effect in immortalized and primary human respiratory epithelia. VX-770 diminished the folding efficiency and the metabolic stability of ΔF508-CFTR at the endoplasmic reticulum (ER) and post-ER compartments, respectively, causing reduced cell surface ΔF508-CFTR density and function. VX-770–induced destabilization of ΔF508-CFTR was influenced by second-site suppressor mutations of the folding defect and was prevented by stabilization of the nucleotide-binding domain 1 (NBD1)–NBD2 interface. The reduced correction efficiency of ΔF508-CFTR, as well as of two other processing mutations in the presence of VX-770, suggests the need for further optimization of potentiators to maximize the clinical benefit of corrector-potentiator combination therapy in CF.
Available drugs are unable to effectively rescue the folding defects in vitro and ameliorate the clinical-phenotype of cystic fibrosis (CF), caused by deletion of F508 (ΔF508 or F508del) and some point mutations in the CF transmembrane conductance regulator (CFTR), a plasma membrane (PM) anion channel. To overcome the corrector efficacy ceiling, here we show that compounds targeting distinct structural defects of CFTR can synergistically rescue mutants expression and function at the PM. High throughput cell-based screens and mechanistic analysis identified three small-molecule series that target defects at the nucleotide binding domain (NBD1), NBD2 and their membrane spanning domains (MSDs) interfaces. While individually these compounds marginally improve ΔF508-CFTR folding efficiency, function, and stability, their combinations lead to ~50–100% of wild type-level correction in immortalized and primary human airway epithelia, and in mouse nasal epithelia. Likewise, corrector combinations were effective for rare missense mutations in various CFTR domains, probably acting via structural allostery, suggesting a mechanistic framework for their broad application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.