Due to the construction of underground structures and hazardous waste storages, understanding and modelling of seepage in concrete has become an important issue in life-span analyses. The theories and calculation methods of unsaturated soil mechanics provide an opportunity to analyze water flow in other types of porous media (e.g. concrete) as well. This study deals with the determination of the permeability for unsaturated and saturated concrete and modelling the water flow in concrete. The direct measurement of the saturated permeability, the preparation of the drying water retention curve and determination of the depth of penetration of water under pressure are involved in the series of tests. For the fitting method of the experimental water retention curves were used Fredlund and Xing (1994) and van Genuchten (1980) model. The theory of lateral shift was applied to estimate the wetting water retention curve from the drying WRC. Thus, we could calculate the unsaturated permeability functions with Fredlund et al. (1994) and van Genuchten (1980) model. The finite element modelling of the standard test for watertightness were performed with Midas GTS using the measured and calculated unsaturated property functions.
Permeability coefficient is the most significant soil parameter in seepage calculations. It has been recognized that permeability of granular soils is strongly related to the grain size, thus numerous empirical correlations have been developed to estimate permeability using its grain size characteristics. In this study the empirical correlations proposed by Hazen (1911), Carrier (2003) and Chapuis (2004) are evaluated and compared to laboratory measurement results. Quaternary Danube soils are very typical in the Carpathian basin, thus their permeability is an important question in many geotechnical applications.
Due to the construction of underground structures and hazardous waste storages, understanding and modelling of water flow through concrete has become a major topic for life-span analyses. The water retention curve (WRC) is an essential unsaturated soil function, which can be determined not only for soil samples, but also for other porous media. This paper deals with the determination of drying water retention curve for six different concrete mixtures that provide a substantial characteristic for the investigation and modelling of seepage through the pores of concrete. According to the complex pore system of the concrete, the bimodal function of van Genuchten (1980) and Fredlund and Xing (1994) models were used for curve fitting. The fitted curves were used to estimate the permeability function using Fredlund et. al (1994) model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.