The cpd mutation localized by T-DNA tagging on Arabidopsis chromosome 5-14.3 inhibits cell elongation controlled by the ecdysone-like brassinosteroid hormone brassinolide. The cpd mutant displays de-etiolation and derepression of light-induced genes in the dark, as well as dwarfism, male sterility, and activation of stress-regulated genes in the light. The CPD gene encodes a cytochrome P450 (CYP90) sharing homologous domains with steroid hydroxylases. The phenotype of the cpd mutant is restored to wild type both by feeding with C23-hydroxylated brassinolide precursors and by ectopic overexpression of the CPD cDNA. Brassinosteroids also compensate for different cell elongation defects of Arabidopsis det, cop, fus, and axr2 mutants, indicating that these steroids play an essential role in the regulation of plant development.
SummaryBrassinosteroids which show high structural similarity to animal steroid hormones elicit a variety of growth responses when exogeneously applied to plant tissues. Thus far however, the function of endogeneous brassinosteroids in higher plants has been unclear. This paper describes three extremely dwarfed Arabidopsis thaliana mutants, cbbl (dwfl-6), cbb2and cbb3, which are impared in cell elongation controlled by brassinosteroids. While cbbl (dwfl-6) and cbb3 can be phenotypically normalized to wild-type by feeding with brassinosteroids indicating deficiencies of brassinosteroid biosynthesis, cbb2 is brassinosteroid-insensitive and defines a function required for further metabolic conversion necessary for biological activity or for perception/signal transduction of these growth-regulating plant steroid hormones. Expression of the meri5 and TCH4 genes is low in all three cbb mutants and can be restored to wild-type levels by brassinosteroid treatment in the cbbl (dwfl-6) and cbb3 mutants but are unaffected in the cbb2 mutant. These data indicate that brassinosteroids are essential for proper plant development and play an important role in the control of cell elongation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.