for the MAGNIMS Study Group IMPORTANCE The central vein sign has been proposed as a specific imaging biomarker for distinguishing between multiple sclerosis (MS) and not MS, mainly based on findings from ultrahigh-field magnetic resonance imaging (MRI) studies. The diagnostic value of the central vein sign in a multicenter setting with a variety of clinical 3 tesla (T) MRI protocols, however, remains unknown. OBJECTIVE To evaluate the sensitivity and specificity of various central vein sign lesion criteria for differentiating MS from non-MS conditions using 3T brain MRI with various commonly used pulse sequences. DESIGN, SETTING, AND PARTICIPANTS This large multicenter, cross-sectional study enrolled participants (n = 648) of ongoing observational studies and patients included in neuroimaging research databases of 8 neuroimaging centers in Europe. Patient enrollment and MRI data collection were performed between
There is evidence for different levels of visuospatial processing with their own frames of reference: viewer-centered, stimulus-centered, and object-centered. The neural locus of these levels can be explored by examining lesion location in subjects with unilateral spatial neglect (USN) manifest in these reference frames. Most studies regarding the neural locus of USN have treated it as a homogenous syndrome, resulting in conflicting results. In order to further explore the neural locus of visuospatial processes differentiated by frame of reference, we presented a battery of tests to 171 subjects within 48 hr after right supratentorial ischemic stroke before possible structural and/or functional reorganization. The battery included MR perfusion weighted imaging (which shows hypoperfused regions that may be dysfunctional), diffusion weighted imaging (which reveals areas of infarct or dense ischemia shortly after stroke onset), and tests designed to disambiguate between various types of neglect. Results were consistent with a dorsal/ventral stream distinction in egocentric/allocentric processing. We provide evidence that portions of the dorsal stream of visual processing, including the right supramarginal gyrus, are involved in spatial encoding in egocentric coordinates, whereas parts of the ventral stream (including the posterior inferior temporal gyrus) are involved in allocentric encoding.
Background: Semantic errors result from the disruption of access either to semantics or to lexical representations. One way to determine the origins of these errors is to evaluate comprehension of words that elicit semantic errors in naming. We hypothesized that in acute stroke there are different brain regions where dysfunction results in semantic errors in both naming and comprehension versus those with semantic errors in oral naming alone. Methods: A consecutive series of 196 patients with acute left hemispheric stroke who met inclusion criteria were evaluated with oral naming and spoken word/picture verification tasks and magnetic resonance imaging within 48 hours of stroke onset. We evaluated the relationship between tissue dysfunction in 10 pre-specified Brodmann's areas (BA) and the production of coordinate semantic errors resulting from (1) semantic deficits or (2) lexical access deficits. Results: Semantic errors arising from semantic deficits were most associated with tissue dysfunction/infarct of left BA 22. Semantic errors resulting from lexical access deficits were associated with hypoperfusion/infarct of left BA 37. Conclusion: Our study shows that semantic errors arising from damage to distinct cognitive processes reflect dysfunction of different brain regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.