The central challenge in automated synthesis planning is to be able to generate and predict outcomes of a diverse set of chemical reactions. In particular, in many cases, the most likely synthesis pathway cannot be applied due to additional constraints, which requires proposing alternative chemical reactions. With this in mind, we present Molecule Edit Graph Attention Network (MEGAN), an end-to-end encoder−decoder neural model. MEGAN is inspired by models that express a chemical reaction as a sequence of graph edits, akin to the arrow pushing formalism. We extend this model to retrosynthesis prediction (predicting substrates given the product of a chemical reaction) and scale it up to large data sets. We argue that representing the reaction as a sequence of edits enables MEGAN to efficiently explore the space of plausible chemical reactions, maintaining the flexibility of modeling the reaction in an end-to-end fashion and achieving state-of-the-art accuracy in standard benchmarks. Code and trained models are made available online at https://github. com/molecule-one/megan.
One of the key challenges in automated synthesis planning is to generate diverse and reliable chemical reactions. Many reactions can be naturally represented using graph transformation rules referred broadly to as reaction templates. Using reaction templates enables accurate and interpretable predictions but can suffer from limited coverage of the reaction space. On the other hand, template-free methods can increase the coverage but can be prone to making trivial mistakes and are challenging to interpret. A promising idea for constructing more interpretable template-free models is to model a reaction as a sequence of graph edits of the substrates. We extend this idea to retrosynthesis and scale it up to large datasets. We propose Molecule Edit Graph Attention Network (MEGAN), a template-free neural model that encodes reaction as a sequence of graph edits. We achieve competitive performance on both retrosynthesis and forward synthesis and in particular state-of-the-art top-k accuracy for larger K values. Crucially, the latter shows excellent coverage of the reaction space of our model. In summary, MEGAN brings together the strong elements of template-free and template-based models and can be applied to both retro and forward synthesis tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.