<p>In recent decades, the tourism industry has become one of the key sectors in the global economy, which is related not only to the number of people employed in tourism services but also to significant revenues from tourism to state budgets. Along with the development of tourism and the increase in the number of tourists, the new so-called phenomenon of "overtourism" has appeared. It causes various negative effects on nature as well as on society. Therefore, in recent years sustainable development of regions in all areas of the economy has been emphasized, especially in the tourism industry. This process is mainly implemented in highly developed countries; however, the problem is likewise significant in developing countries, including Central Asia. Geotourism fits perfectly into this trend, as residents and tourists benefit from it, and public awareness of the environment is a positive side effect. In addition, geotourism can serve as a powerful tool in educating society about the protection of abiotic and biotic elements of the natural environment.</p> <p>The main aim of the study is to analyze the current state and prospects for the development of geotourism in the Jeti-Oguz Valley in the southern part of the Issyk-Kul Region, Kyrgyzstan. This region is one of the most attractive destinations for tourists throughout Central Asia. The Jeti-Oguz Valley was selected as an area for detailed research based on geoinformation analysis of individual elements of the natural environment.</p> <p>The analysis of the current state and prospects for the development of geotourism is primarily based on a detailed inventory of georesources and tourist infrastructure of the Jeti-Oguz Valley. The inventory was supplemented by surveys among the local community. Based on the collected research material, a SWOT (Strengths, Weaknesses, Opportunities, and Threats) analysis was carried out regarding the further development of geotourism in the Issyk-Kul Region.</p>
<p>The recognition of natural environment current functioning is possible throughout the determination of the energy and material balance (mainly water and dissolved substances) in various catchments. Dissolved matter circulation in the river catchment reflects natural hydrometeorological and hydrochemical processes as well as anthropogenic activity, which appears primarily as the supply of pollutants.</p><p>The research was conducted in 4 hydrological years (2016-2019) within the borders of a small urban catchment in the northern part of the city of Pozna&#324; (Poland), the main watercourse of which is the R&#243;&#380;any Stream (R&#243;&#380;any Strumie&#324;). The natural environment of the R&#243;&#380;any Stream catchment is characterized by significant transformations due to human activity. The most important environmental problems include threats related to the pollution of surface waters and groundwater as a result of processes related to the functioning of an urban catchment.</p><p>The main aim of this work is to present the magnitude of pollution supply into the catchment and to determine the temporal variability of matter circulation in a small urban catchment in years with different pluvial conditions and therefore quantitatively changing atmospheric supply reaching the geoecosystem.</p><p>The magnitude of pollution supply to the catchment was determined on the basis of systematic, comprehensive measurements of the natural environment. The measurement system and the field research methodology refer to the methodological concept of the system functioning, as well as the assumptions of the European International Cooperative Programme on Integrated Monitoring of Air Pollution Effects on Ecosystems (ICP IM) and Integrated Monitoring of the Natural Environment in Poland (ZMSP) programs.</p><p>This work presents the results of measurements of several components of the natural environment, initially including meteorological conditions (mainly precipitation and air temperature). The next elements of the research concerned air pollution with sulphur dioxide and nitrogen dioxide as well as the chemical composition of precipitation, which is considered as an entry into the geoecosystem. Moreover, there are also presented the results of the physicochemical properties of surface waters (including levels, flows and chemical composition) and groundwater.</p><p>The quantitative and qualitative characteristics of the atmospheric supply to the geoecosystem, the water cycle in the catchment and the water runoff confirm the assumptions that the dissolved matter circulation is one of the most important indicators of changes in the natural environment in the moderate morphoclimatic zone.</p>
The main aim of the work detailed here was to identify the level and composition of selected atmospheric pollutants supplied mainly with precipitation to the urbanized Różany Strumień catchment in Poznań, Poland; and to determine their impact on the chemical composition of water at subsequent stages of its circulation. The research was conducted in the hydrological years 2016-2020 as part of the Integrated Monitoring of the Natural Environment in Poland (ZMŚP) program, using the infrastructure of the ZMŚP’s "Poznań-Morasko" Base Station – of Adam Mickiewicz University in Poznań – the first such Base Station to be located within the boundaries of a large urban agglomeration. A key finding concerned a positive ion balance among nutrients supplied as a result of human activity (e.g. through fertiliser use) – involving NO3-, NH4+ and K+. Remaining chemical components (denudation ions) present in the waters circulating in the catchment are in turn characterised by a negative balance.
The paper presents potential soil erosion risk of the upper Parsęta catchment (Drawskie Lake District, NW Poland). The model considers following conditions affecting the size of soil erosion: slope gradient, LS factor, lithology, land use and land cover. Thematic maps have been reclassified into a 4-degree division. Potential soil erosion risk map was prepared on the basis of thematic maps. Areas with small and moderate susceptibility to soil erosion occupy 71.5% of the catchment area. The 4th class of erosiveness is represented by the river valley slopes, steep slopes of kame and moraine hills, covering 28.5% of the upper Parsęta catchment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.