Context. The Atacama Large Millimeter/submillimeter Array (ALMA) started regular observations of the Sun in 2016, first offering receiver Band 3 at wavelengths near 3 mm (100 GHz) and Band 6 at wavelengths around 1.25 mm (239 GHz). Aims. Here we present an initial study of one of the first ALMA Band 3 observations of the Sun. Our aim is to characterise the diagnostic potential of brightness temperatures measured with ALMA on the Sun. Methods. The observation covers a duration of 48 min at a cadence of 2 s targeting a quiet Sun region at disc-centre. Corresponding time series of brightness temperature maps are constructed with the first version of the Solar ALMA Pipeline and compared to simultaneous observations with the Solar Dynamics Observatory (SDO). Results. The angular resolution of the observations is set by the synthesised beam, an elliptical Gaussian that is approximately 1.4″ × 2.1″ in size. The ALMA maps exhibit network patches, internetwork regions, and elongated thin features that are connected to large-scale magnetic loops, as confirmed by a comparison with SDO maps. The ALMA Band 3 maps correlate best with the SDO/AIA 171 Å, 131 Å, and 304 Å channels in that they exhibit network features and, although very weak in the ALMA maps, imprints of large-scale loops. A group of compact magnetic loops is very clearly visible in ALMA Band 3. The brightness temperatures in the loop tops reach values of about 8000−9000 K and in extreme moments up to 10 000 K. Conclusions. ALMA Band 3 interferometric observations from early observing cycles already reveal temperature differences in the solar chromosphere. The weak imprint of magnetic loops and the correlation with the 171, 131, and 304 SDO channels suggests, however, that the radiation mapped in ALMA Band 3 might have contributions from a wider range of atmospheric heights than previously assumed, but the exact formation height of Band 3 needs to be investigated in more detail. The absolute brightness temperature scale as set by total power measurements remains less certain and must be improved in the future. Despite these complications and the limited angular resolution, ALMA Band 3 observations have a large potential for quantitative studies of the small-scale structure and dynamics of the solar chromosphere.
Solar observations with the Atacama Large Millimeter/submillimeter Array (ALMA) provide us with direct measurements of the brightness temperature in the solar chromosphere. We study the temperature distributions obtained with ALMA Band 6 (in four subbands at 1.21, 1.22, 1.29, and 1.3 mm) for various areas at, and in the vicinity of, a sunspot, comprising quasi-quiet and active regions with different amounts of underlying magnetic fields. We compare these temperatures with those obtained at near-and far-ultraviolet (UV) wavelengths (and with the line-core intensities of the optically-thin far-UV spectra), co-observed with the Interface Region Imaging Spectrograph (IRIS) explorer. These include the emission peaks and cores of the Mg ii k 279.6 nm and Mg ii h 280.4 nm lines as well as the line cores of C ii 133.4 nm, O i 135.6 nm, and Si iv 139.4 nm, sampling the mid-to-high chromosphere and the low transition region. Splitting the ALMA sub-bands resulted in an slight increase of spatial resolution in individual temperature maps, thus, resolving smaller-scale structures compared to those produced with the standard averaging routines. We find that the radiation temperatures have different, though somewhat overlapping, distributions in different wavelengths and in the various magnetic regions. Comparison of the ALMA temperatures with those of the UV diagnostics should, however, be interpreted with great caution, the former is formed under the local thermodynamic equilibrium (LTE) conditions, the latter under non-LTE. The mean radiation temperature of the ALMA Band 6 is similar to that extracted from the IRIS C ii line in all areas with exception of the sunspot and pores where the C ii poses higher radiation temperatures. In all magnetic regions, the Mg ii lines associate with the lowest mean radiation temperatures in our sample. These will provide constraints for future numerical models.
Context. Solar observations with the Atacama Large Millimeter/sub-millimeter Array (ALMA) facilitate studies of the atmosphere of the Sun at chromospheric heights at high spatial and temporal resolution at millimeter wavelengths. Aims. ALMA intensity data at millimeter(mm)-wavelengths are used for a first detailed systematic assessment of the occurrence and properties of small-scale dynamical features in the quiet Sun. Methods. We analyzed ALMA Band 3 data (∼3 mm/100 GHz) with a spatial resolution of ∼1.4–2.1 arcsec and a duration of ∼40 min together with SDO/HMI magnetograms. The temporal evolution of the mm maps is studied to detect pronounced dynamical features, which then are connected to dynamical events via a k-means clustering algorithm. We studied the physical properties of the resulting events and explored whether or not they show properties consistent with propagating shock waves. For this purpose, we calculated observable shock wave signatures at mm wavelengths from one- and three-dimensional model atmospheres. Results. We detect 552 dynamical events with an excess in brightness temperature (ΔTb) of at least ≥400 K. The events show a large variety in size up to ∼9″, amplitude ΔTb up to ∼1200 K with typical values in the range ∼450–750 K, and lifetime at full width at half maximum of ΔTb of between ∼43 and 360 s, with typical values between ∼55 and 125 s. Furthermore, many of the events show signature properties suggesting that they are likely produced by propagating shock waves. Conclusions. There are a lot of small-scale dynamic structures detected in the Band 3 data, even though the spatial resolution sets limitations on the size of events that can be detected. The number of dynamic signatures in the ALMA mm data is very low in areas with photospheric footpoints with stronger magnetic fields, which is consistent with the expectation for propagating shock waves.
A dense forest of slender bright fibrils near a small solar active region is seen in high-quality narrowband Ca II H images from the SuFI instrument onboard the SUNRISE balloon-borne solar observatory. The orientation of these slender Ca II H fibrils (SCF) overlaps with the magnetic field configuration in the low solar chromosphere derived by magnetostatic extrapolation of the photospheric field observed with SUNRISE/IMaX and SDO/HMI. In addition, many observed SCFs are qualitatively aligned with small-scale loops computed from a novel inversion approach based on best-fit numerical MHD simulation. Such loops are organized in canopy-like arches over quiet areas that differ in height depending on the field strength near their roots.
The thermal structure of the chromosphere is regulated through a complex interaction of various heating processes, radiative cooling, and the ionization degree of the plasma. Here we study the impact on the thermal properties of the chromosphere when including the combined action of nonequilibrium ionization (NEI) of hydrogen and helium and ion-neutral interaction effects. We have performed a 2.5D radiative magnetohydrodynamic simulation including ion-neutral interaction effects by solving the generalized Ohm's law (GOL) as well as NEI for hydrogen and helium using the Bifrost code. The GOL equation includes ambipolar diffusion and the Hall term. We compare this simulation with another simulation that computes the ionization in local thermodynamic equilibrium (LTE) including ion-neutral interaction effects. Our numerical models reveal substantial thermal differences in magneto-acoustic shocks, the wake behind the shocks, spicules, low-lying magnetic loops, and the transition region. In particular, we find that heating through ambipolar diffusion in shock wakes is substantially less efficient, while in the shock fronts themselves it is more efficient, under NEI conditions than when assuming LTE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.