The copper refinery process produces Se(VI)-bearing wastewater with a high content of Cl ¹ and SO 4 2¹ ions. To overcome the negative effect caused by Cl ¹ and SO 4 2¹ ions on Se(VI) reduction and its following removal, this study investigated the possible synergistic effect of the combination of Se(VI)-reducing bacterium, Thaurea (T.) selenatis and zero-valent iron (ZVI). In the presence of SO 4 2¹ (200 mM) and Cl ¹ (300 mM), the following was observed: (i) ZVI alone was unable to remove Se both under strictly aerobic and micro-aerobic conditions.(ii) Se(VI) reduction by T. selenatis alone was severely inhibited under anaerobic conditions (and thus no microbial growth was observed).(iii) On the other hand, T. selenatis was capable of growth and Se(VI) reduction under micro-aerobic conditions. (iv) Combining T. selenatis and ZVI under micro-aerobic conditions showed a synergistic effect on Se(VI) reduction, readily facilitating Se removal. This synergistic effect was optimized by adjusting the pH to near neutral (optimal for T. selenatis growth), but by adjusting the temperature to 35°C (sub-optimal for T. selenatis growth): Se removal of 55% by T. selenatis alone, was significantly improved to 98% by combining T. selenatis and ZVI. The proposed key process to display the synergistic effect on Se removal under micro-aerobic conditions is as follows: (i) Using the remaining dissolved O 2 (DO) during the first hours, T. selenatis can overcome the inhibitory effect of Cl ¹ and SO 4 2¹ by growing with more energy-gaining aerobic respiration, (ii) ZVI indirectly serves as a reducing agent to maintain low DO levels, consequently readily switching from aerobic to anaerobic Se(VI) respiration by T. selenatis. (iii) ZVI may also be acting directly for Se deposition by reducing microbially-produced intermediate Se(IV), which is more reactive than original Se(VI). The present findings could be used as a basis for developing an economically feasible and environmentally harmless bio-treatment technology for Se(VI) containing copper refinery wastewaters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.