Nowadays, along with the classical and experienced surveying methods, modern technologies are rapidly developing and entering into the economy. Laser scanning has many benefits and uses. Application of this technology results in a point cloud from which it is possible to create three-dimensional models which can represent topographic properties, structure dimensions, and spatial relationships. The aim of the research is to investigate the application of three-dimensional laser scanning in the internal surveying of premises and in the development of the 3D model buildings. The task of the research is to apply the application of laser rangefinder and ultrasonic rangefinder method in the scanning of a building that is characterized by complex architecture, an interior garden, many protrusions, and a special layout of windows and doors. The use of the Stonex X300 laser scanner and Stonex M6 laser rangefinder has been described as well. To achieve the goals and objectives of the research, laser telemetry and ultrasonic telemetry method, method of three-dimensional modeling, as well as analysis of scientific literature, mathematical calculation methods, and analysis of documents and factual materials have been used. As the result of the investigation 3D model of a building consisting of 47 individual point clouds was developed. The main conclusion is that three-dimensional modeling as a computer graphics method for the three-dimensional representation of any object or surface can be used.
In order to evaluate the accuracy of the local geodetic network of Jurmala City, in research, comparison of forty-seven selected polygonometry network point coordinates with the obtained data was made by performing measurements by real time cinematic (RTK) method in LatPos base station system. Points were chosen so in order to cover evenly the entire territory of the city. At present, gradual renewal and improvement of the local geodetic network takes place in Jurmala. The linear discrepancy of coordinates obtained in measurements varies from 0.016 m to 0.259 m, mean linear discrepancy in the measured points is fixed 0.110 m. Discrepancy of plane coordinates in different regions of Jurmala is not even. It is rather even within approximate boundaries of the determined regions, this is indicated by different directions of offset vectors, which in eastern part of the city are pointed mainly in NW direction, in central part directions are pointed in W direction, but in the western part of the city pointed in NE direction. Concerning heights, only for 3 of measured points discrepancy exceeds 0.05 m error and there are no connection concerning some specific region. 15% of the measured points of the local geodetic network are with appropriate accuracy of plane coordinates. The linear discrepancy of plane coordinates for points of the local geodetic network, which are measured by RTK method and compared with data from the improved network is 0.024 (m), which indicates the high accuracy of RTK method in measurement data. In Jurmala City, obtaining of data by GNNS data receivers is encumbered by large density of trees. Therefore the local geodetic network in city has very important role in order to ensure performance of geodetic measurements of high quality in the territory of the city. Aim of the research is to evaluate the accuracy of the local geodetic network of Jurmala City. The following tasks have been set for achieving the aim: research of the given problem, visit of the local geodetic network points, performing control measurements, data processing and analysis.
<p>With the development of remote sensing technologies the application of different geospatial models in research has become increasingly important. Terrain relief is the difference in elevation between the high and low points of a land surface, that is, the change in the height of the ground over the area. Terrain relative relief (or elevation) is the relative difference in elevation between a morphological feature and those features surrounding it (e.g. height difference between a peak and surrounding peaks, a depression and surrounding depressions etc.). Together with terrain morphology, ppland other terrain attributes, it is useful for describing how the terrain affects intertidal and subtidal processes.</p><p>&#160;Appropriate decision-making tools are required for urban and rural planning, design and management. The usage of DEM (Digital Elevation Model), DSM (Digital Surface Model) and DTM (Digital Terrain Model) helps researchers and designers to analyse issues connected with drainage, geology, earth crust movements, sound and radio-wave distribution, wind effects, exposure to sun, etc. Analysis of the future scenarios of geospatial models has an essential role in the field of water management and various environmental topics. This research aims to focus on the environmental issues in a context of water quality and hydrology.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.