There have been many studies on the mechanisms of internalization of DNA-anti-DNA immune complexes by cells, including the one used for rheumatoid factor-expressing mouse B cells. In parallel, studies on the role of intracellular DNA sensors in the pathogenesis of systemic lupus erythematosus (SLE) have been conducted, including the one using a mouse model lacking one of the sensors. These and other data have established a framework for understanding the pathogenic role of anti-DNA antibodies, but studies on normal cells are limited. Here, we used the monoclonal anti-dsDNA antibody 2C10, 2-kbp dsDNA and healthy human peripheral blood mononuclear cells (PBMCs) to test whether and how 2C10 and/or DNA cause pathology in normal cells. We found that on culture with PBMCs, 2C10 preferentially entered monocytes and that DNA enhanced this internalization. In contrast, DNA alone was not significantly internalized by monocytes, but 2C10 facilitated its internalization. This was suppressed by cytochalasin D, but not by methyl-β-cyclodextrin, chloroquine or an Fc blocker, suggesting the involvement of macropinocytosis in this process. Internalization of 2C10 and DNA together resulted in production of interferon (IFN)-α, IFN-γ, tumor necrosis factor (TNF)-α, monocyte chemoattractant protein-1 (MCP-1), interleukin (IL)-1β, IL-6, IL-10 and IL-33 by PBMCs. Cytokine production was suppressed by chloroquine and shikonin, but not by RU.521, suggesting dependence on activation of the Toll-like receptor (TLR)-9 and absent in melanoma 2 (AIM-2) pathways. These results established a simple model to demonstrate that anti-DNA antibodies can cause dysregulation of cytokine network mimicking systemic lupus erythematosus in culture of normal PBMCs, and emphasize again the importance of maintaining anti-DNA antibodies at low levels by treatment.
Activation of CD8+ Tax‐specific CTL is a new therapeutic concept for adult T‐cell leukemia (ATL) caused by HTLV‐1. A recent clinical study of the dendritic cell vaccine pulsed with Tax peptides corresponding to CTL epitopes showed promising outcomes in ATL patients possessing limited human leukocyte antigen (HLA) alleles. In this study, we aimed to develop another immunotherapy to activate Tax‐specific CTL without HLA limitation by using patients’ own HTLV‐1‐infected cells as a vaccine. To examine the potential of HTLV‐1‐infected T‐cells to activate CTL via antigen presenting cells, we established a unique co–culture system. We demonstrated that mitomycin C‐treated HLA‐A2‐negative HTLV‐1‐infected T‐cell lines or short‐term cultured peripheral blood mononuclear cells (PBMC) derived from ATL patients induced cross–presentation of Tax antigen in co–cultured HLA‐A2‐positive antigen presenting cells, resulting in activation of HLA‐A2‐restricted CD8+ Tax‐specific CTL. This effect was not inhibited by a reverse transcriptase inhibitor. IL‐12 production and CD86 expression were also induced in antigen presenting cells co–cultured with HTLV‐1‐infected cells at various levels, which were improved by pre–treatment of the infected cells with histone deacetylase inhibitors. Furthermore, monocyte‐derived dendritic cells induced from PBMC of a chronic ATL patient produced IL‐12 and expressed enhanced levels of CD86 when co–cultured with autologous lymphocytes that had been isolated from the same PBMC and cultured for several days. These findings suggest that short‐term cultured autologous PBMC from ATL patients could potentially serve as a vaccine to evoke Tax‐specific CTL responses.
Root hairs protruding from epidermal cells increase the surface area for water absorption and nutrient uptake. Various environmental factors including light, oxygen concentration, carbon dioxide concentration, calcium and mycorrhizal associations promote root hair formation in Arabidopsis thaliana. Light regulates the expression of a large number of genes at the transcriptional and post-transcriptional levels; however, there is little information linking the light response to root hair development. In this study, we describe a novel mutant, light-sensitive root-hair development 1 (lrh1), that displays enhanced root hair development in response to light. Hypocotyl and root elongation was inhibited in the lrh1 mutant, which had a late flowering phenotype. We identified the gene encoding the p14 protein, a putative component of the splicing factor 3b complex essential for pre-mRNA splicing, as being responsible for the lrh1 phenotype. Indeed, regulation of alternative splicing was affected in lrh1 mutants and treatment with a splicing inhibitor mimicked the lrh1 phenotype. Genome-wide alterations in pre-mRNA splicing patterns including differential splicing events of light signaling- and circadian clock-related genes were found in lrh1 as well as a difference in transcriptional regulation of multiple genes including upregulation of essential genes for root hair development. These results suggest that pre-mRNA splicing is the key mechanism regulating root hair development in response to light signals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.