Currently, just a few major parameters are used for cardiovascular (CV) risk quantification to identify many of the high-risk subjects; however, they leave a lot of them with an underestimated level of CV risk which does not reflect the reality. The submitted study design of the Kosice Selective Coronarography Multiple Risk (KSC MR) Study will use computer analysis of coronary angiography results of admitted patients along with broad patients’ characteristics based on questionnaires, physical findings, laboratory and many other examinations. Obtained data will undergo machine learning protocols with the aim of developing algorithms which will include all available parameters and accurately calculate the probability of coronary artery disease. The KSC MR study results, if positive, could establish a base for development of proper software for revealing high-risk patients, as well as patients with suggested positive coronary angiography findings, based on the principles of personalised medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.