The importance of building/maintaining soil carbon, for soil health and CO 2 mitigation, is of increasing interest to a wide audience, including policymakers, NGOs and land managers. Integral to any approaches to promote carbon sequestering practices in managed soils are reliable, accurate and cost-effective means to quantify soil C stock changes and forecast soil C responses to different management, climate and edaphic conditions. While technology to accurately measure soil C concentrations and stocks has been in use for decades, many challenges to routine, cost-effective soil C quantification remain, including large spatial variability, low signal-to-noise and often high cost and standardization issues for direct measurement with destructive sampling. Models, empirical and process-based, may provide a cost-effective and practical means for soil C quantification to support C sequestration policies. Examples are described of how soil science and soil C quantification methods are being used to support domestic climate change policies to promote soil C sequestration on agricultural lands (cropland and grazing land) at national and provincial levels in Australia and Canada. Finally, a quantification system is outlinedconsisting of well-integrated datamodel frameworks, supported by expanded measurement and monitoring networks, remote sensing and crowd-sourcing of management activity datathat could comprise the core of a new global soil information system. Take Home messages:Increasing soil organic carbon (SOC) stocks would improve the performance of working (managed) soils especially under drought or other stressors, increase agricultural resilience and fertility, and reduce net GHG emissions from soils.There are many improved management practices that can be and are currently being applied to cropland and grazing lands to increase SOC.Land managers are decision makers who operate in larger contexts that bound their agricultural and financial decisions (e.g. market forces, crop insurance, input subsidies, conservation mandates, etc.).Any effort to value improvements in the performance of agricultural soils through enhanced levels of SOC will require feasible, credible and creditable assessment of SOC stocks, which are governed by dynamic and complex soil processes and properties. This paper evaluates currently accepted methods of quantifying and forecasting SOC that, when augmented and pulled together, could provide the basis for a new global soil information system.
Question: Why do similar fen meadow communities occur in different landscapes? How does the hydrological system sustain base‐rich fen mires and fen meadows? Location: Interdunal wetlands and heathland pools in The Netherlands, percolation mires in Germany, Poland, and Siberia, and calcareous spring fens in the High Tatra, Slovakia. Methods: This review presents an overview of the hydrological conditions of fen mires and fen meadows that are highly valued in nature conservation due to their high biodiversity and the occurrence of many Red List species. Fen types covered in this review include: (1) small hydrological systems in young calcareous dune areas, and (2) small hydrological systems in decalcified old cover sand areas in The Netherlands; (3) large hydrological systems in river valleys in Central‐Europe and western‐Siberia, and (4) large hydrological systems of small calcareous spring fens with active precipitation of travertine in mountain areas of Slovakia. Results: Different landscape types can sustain similar nutrient poor and base‐rich habitats required by endangered fen meadow species. The hydrological systems of these landscapes are very different in size, but their ground water flow pattern is remarkably similar. Paleoecological research showed that travertine forming fen vegetation types persisted in German lowland percolation mires from 6000 to 3000 BP. Similar vegetation types can still be found in small mountain mires in the Slovak Republic. Small pools in such mires form a cascade of surface water bodies that stimulate travertine formation in various ways. Travertine deposition prevents acidification of the mire and sustains populations of basiphilous species that elsewhere in Europe are highly endangered. Conclusion: Very different hydrological landscape settings can maintain a regular flow of groundwater through the top soil generating similar base‐rich site conditions. This is why some fen species occur in very different landscape types, ranging from mineral interdunal wetlands to mountain mires.
In general, mires develop by autogenic succession from more groundwater‐fed to more rainwater‐fed. This study from a calcareous mire in the West Carpathians (Slovakia) describes a similar development in the Early Holocene, followed by a reverse development in the Middle and Late Holocene. Pollen, macrofossil and testate amoeba analyses show that the site started as a minerotrophic open fen woodland. After 10 700 cal a BP autogenic succession led to the accumulation of at least 1 m of Sphagnum fuscum peat. Around 9000 cal a BP, as climate could no longer sustain a stable water regime, the bog desiccated and a fire broke out. The fire removed part of the peat layer and as a consequence relative water levels rose, leading to the establishment of a wet minerotrophic swamp carr with Thelypteris palustris, Equisetum sp. and Alnus sp. with extremely slow peat accumulation. After 600 cal a BP, rapid peat accumulation with calcareous tufa formation resumed as a result of anthropogenic deforestation and hydrological changes in the catchment and resulting increased groundwater discharge. At present the mire still hosts a wealth of relict and endangered plant and animal species typical of calcareous fens and fen meadows. Copyright © 2011 John Wiley & Sons, Ltd.
Even if global warming is kept below +2°C, European agriculture will be significantly impacted. Soil degradation may amplify these impacts substantially and thus hamper crop production further. We quantify biophysical consequences and bracket uncertainty of +2°C warming on calories supply from 10 major crops and vulnerability to soil degradation in Europe using crop modeling. The Environmental Policy Integrated Climate (EPIC) model together with regional climate projections from the European branch of the Coordinated Regional Downscaling Experiment (EURO‐CORDEX) was used for this purpose. A robustly positive calorie yield change was estimated for the EU Member States except for some regions in Southern and South‐Eastern Europe. The mean impacts range from +30 Gcal ha−1 in the north, through +25 and +20 Gcal ha−1 in Western and Eastern Europe, respectively, to +10 Gcal ha−1 in the south if soil degradation and heat impacts are not accounted for. Elevated CO2 and increased temperature are the dominant drivers of the simulated yield changes in high‐input agricultural systems. The growth stimulus due to elevated CO2 may offset potentially negative yield impacts of temperature increase by +2°C in most of Europe. Soil degradation causes a calorie vulnerability ranging from 0 to 50 Gcal ha−1 due to insufficient compensation for nutrient depletion and this might undermine climate benefits in many regions, if not prevented by adaptation measures, especially in Eastern and North‐Eastern Europe. Uncertainties due to future potentials for crop intensification are about 2–50 times higher than climate change impacts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.