Summary• We studied the effects of increasing levels of atmospheric nitrogen (N) deposition on nutrient limitation of ombrotrophic Sphagnum plants.• Fifteen mires in 11 European countries were selected across a natural gradient of bulk atmospheric N deposition from 0.1 to 2 g/m 2 year − 1 . Nutritional constraints were assessed based on nutrient ratios of N, phosphorus (P), and potassium (K) in Sphagnum plants collected in hummocks (i.e. relatively drier microhabitats) and in lawns (i.e. relatively wetter microhabitats).• Nutrient ratios in Sphagnum plants increased steeply at low atmospheric N input, but above a threshold of N deposition of c . 1 g/m 2 year − 1 the N : P and N : K ratios tended to saturation. Increasing atmospheric N deposition was also accompanied by a reduced retention of Ca and Mg in Sphagnum plants and a decreased stem volumetric density in hummock Sphagnum plants.• We suggest a critical load of N deposition in Europe of 1 g/m 2 year − 1 above which Sphagnum plants change from being N-limited to be K + P colimited, at N : P > 30 and N : K > 3.
Aim The development of metacommunity theory inspired a series of studies exploring the importance of environmental and spatial effects on the composition of biotic assemblages. However, the comparison of different groups of organisms has been hampered by differences in sampling design, spatial scales or the environmental variables involved. Our aim was to test how dispersal ability affects metacommunity structure and associated species distributions by sampling different species groups in the same plots to avoid these problems.
Location Western Carpathian Mountains (Europe).Methods In 191 fens we sampled the composition of diatom, bryophyte, vascular plant and mollusc assemblages, water chemistry, and macroclimatic data. We then generated spatial variables covering all relevant spatial scales using analysis of principal coordinates of neighbour matrices (PCNM). We applied the adjusted variation partitioning algorithm to quantify the effects of environment and space.Results Pure effects of water chemistry and space were highly significant for all groups of organisms. Spatial effects were stronger for groups with larger propagules (vascular plants, molluscs) than for those with smaller propagules (diatoms, bryophytes). Assemblages of macroscopic bryophytes were structured slightly less by geography and much more by environment than were those of microscopic diatoms. Vascular plant and mollusc assemblages turned out to be more spatially structured (as compared to diatom and bryophyte assemblages), with small differences between the two groups. Coarse-scale spatial effects dominated in the bryophyte metacommunity, while in the other groups, including diatoms, finer-scale effects were also important.Main conclusions Given that our analyses are based on a standardized sampling and analytical framework, our findings provide strong support for the hypothesis that both environmental and spatial variables structure metacommunities of organisms with very different dispersal abilities, including microscopic diatoms. In addition, we show for the first time that the strengths of these effects and their scale dependence may be predicted using important trait differences between organisms, for example differences in propagule size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.