To investigate the paternal population history of New Guinea, 183 individuals from 11 regional populations of West New Guinea (WNG) and 131 individuals from Papua New Guinea (PNG) were analyzed at 26 binary markers and seven short-tandem-repeat loci from the nonrecombining part of the human Y chromosome and were compared with 14 populations of eastern and southeastern Asia, Polynesia, and Australia. Y-chromosomal diversity was low in WNG compared with PNG and with most other populations from Asia/Oceania; a single haplogroup (M-M4) accounts for 75% of WNG Y chromosomes, and many WNG populations have just one Y haplogroup. Four Y-chromosomal lineages (haplogroups M-M4, C-M208, C-M38, and K-M230) account for 94% of WNG Y chromosomes and 78% of all Melanesian Y chromosomes and were identified to have most likely arisen in Melanesia. Haplogroup C-M208, which in WNG is restricted to the Dani and Lani, two linguistically closely related populations from the central and western highlands of WNG, was identified as the major Polynesian Y-chromosome lineage. A network analysis of associated Y-chromosomal short-tandem-repeat haplotypes suggests two distinct population expansions involving C-M208--one in New Guinea and one in Polynesia. The observed low levels of Y-chromosome diversity in WNG contrast with high levels of mtDNA diversity reported for the same populations. This most likely reflects extreme patrilocality and/or biased male reproductive success (polygyny). Our data further provide evidence for primarily female-mediated gene flow within the highlands of New Guinea but primarily male-mediated gene flow between highland and lowland/coastal regions.
HmtDB (http://www.hmtdb.uniba.it:8080/hmdb) is a open resource created to support population genetics and mitochondrial disease studies. The database hosts human mitochondrial genome sequences annotated with population and variability data, the latter being estimated through the application of the SiteVar software based on site-specific nucleotide and amino acid variability calculations. The annotations are manually curated thus adding value to the quality of the information provided to the end-user. Classifier tools implemented in HmtDB allow the prediction of the haplogroup for any human mitochondrial genome currently stored in HmtDB or externally submitted de novo by an end-user. Haplogroup definition is based on the Phylotree system. End-users accessing HmtDB are hence allowed to (i) browse the database through the use of a multi-criterion ‘query’ system; (ii) analyze their own human mitochondrial sequences via the ‘classify’ tool (for complete genomes) or by downloading the ‘fragment-classifier’ tool (for partial sequences); (iii) download multi-alignments with reference genomes as well as variability data.
Edible insects may be a source of long-chain polyunsaturated fatty acids (LC-PUFA). The aim of this article is to test for differences in aquatic and terrestrial insects used in human nutrition. We implemented linear models and discovered that differences in the proportion of LC-PUFA between aquatic and terrestrial insects do exist, with terrestrial insects being significantly richer in particular omega-6 fatty acids. In conclusion, any kind of insect may provide valuable sources of LC-PUFA. Because terrestrial insects are more abundant and easier to collect, they can be considered a better source of LC-PUFA than aquatic ones.
This paper reports human mitochondrial DNA variability in West New Guinea (the least known, western side of the island of New Guinea), not yet described from a molecular perspective. The study was carried out on 202 subjects from 12 ethnic groups, belonging to six different Papuan language families, representative of both mountain and coastal plain areas. Mitochondrial DNA hypervariable region 1 (HVS 1) and the presence of the 9-bp deletion (intergenic region COII-tRNA(Lys)) were investigated. HVS 1 sequencing identified 73 polymorphic sites defining 89 haplotypes; the 9-bp deletion, which is considered a marker of Austronesian migration in the Pacific, was found to be absent in the whole West New Guinea study sample. Statistical analysis applied to the resulting haplotypes reveal high heterogeneity and an intersecting distribution of genetic variability in these populations, despite their cultural and geographic diversity. The results of subsequent phylogenetic approaches subdivide mtDNA diversity in West New Guinea into three main clusters (groups I-III), defined by sets of polymorphisms which are also shared by some individuals from Papua New Guinea. Comparisons with worldwide HVS 1 sequences stored in the MitBASE database show the absence of these patterns outside Oceania and a few Indonesian subjects, who also lack the 9-bp deletion. This finding, which is consistent with the effects of genetic drift and prolonged isolation of West New Guinea populations, lead us to regard these patterns as New Guinea population markers, which may harbor the genetic memory of the earliest human migrations to the island.
Earthworms have provided ancient cultures with food and sources of medicinal cures. Ayurveda, traditional Chinese medicine (TCM), and practices in Japan, Vietnam, and Korea have focused first on earthworms as sources of food. Gradually fostering an approach to potential beneficial healing properties, there are renewed efforts through bioprospecting and evidence-based research to understand by means of rigorous investigations the mechanisms of action whether earthworms are used as food and/or as sources of potential medicinal products. Focusing on earthworms grew by serendipity from an extensive analysis of the earthworm's innate immune system. Their immune systems are replete with leukocytes and humoral products that exert credible health benefits. Their emerging functions with respect to evolution of innate immunity have long been superseded by their well-known ecological role in soil conservation. Earthworms as inexpensive, noncontroversial animal models (without ethical concerns) are not vectors of disease do not harbor parasites that threaten humans nor are they annoying pests. By recognizing their numerous ecological, environmental, and biomedical roles, substantiated by inexpensive and more comprehensive investigations, we will become more aware of their undiscovered beneficial properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.