In this paper, we extend our ensemble-based component model DEECo with the capability to use machine-learning and optimization heuristics in establishing and reconfiguration of autonomic component ensembles. We show how to capture these concepts on the model level and give an example of how such a model can be beneficially used for modeling access-control related problem in the Industry 4.0 settings. We argue that incorporating machine-learning and optimization heuristics is a key feature for modern smart systems which are to learn over the time and optimize their behavior at runtime to deal with uncertainty in their environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.