Acrylonitrile butadiene styrene has relatively good mechanical performances, but its low melt fluidity limits the production of thin parts. In this research, acrylonitrile butadiene styrene/thermoplastic polyurethane (ABS/TPU) blends and ABS/TPU/CNT nanocomposites were prepared by employing melt-mixing process. The melt fluidity, mechanical and fracture behavior of different samples were evaluated. The morphology of fracture surfaces was studied by scanning electron microscopy. The addition of TPU into ABS substantially elevated the melt flow index, but noticeably weakened the notched impact toughness. The presence of carbon nanotubes in ABS/TPU blend promoted the mechanical performances and developed a rough fracture surface morphology. The notched impact resistance and essential work of fracture in nanocomposite containing 0.1 wt.% CNT showed about 95 and 50% increases respectively as compared to ABS/TPU (90/10) blend. In the presence of 0.3 wt.% CNT, the plane stress condition favorably dominated the toughness behavior, enhancing the non-essential work of fracture and crack propagation energy. The appropriate dispersion of carbon nanotubes and their adhesion to ABS/TPU polymer matrix were considered as the prominent factors affecting the fracture resistance of ABS/TPU/CNT nanocomposites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.