Three angiotensin II (Ang II) analogues encompassing a benzodiazepine-based gamma-turn-like scaffold have been synthesized. Evaluation of the compounds in a radioligand binding assay showed that they had no affinity to the rat liver AT(1) receptor. However, one of the compounds displayed considerable affinity to the pig uterus AT(2) receptor (K(i) = 3.0 nM) while the other two lacked affinity to this receptor. It was hypothesized that the reason for the inactivity of one of these analogues to the AT(2) receptor was that the guanidino group of the Arg(2) residue and/or the N-terminal end of the pseudopeptide could not interact optimally with the receptor. To investigate this hypothesis, a conformational analysis was performed and a comparison was carried out with the monocyclic methylenedithioether analogue cyclo(S-CH(2)-S)[Cys(3,5)]Ang II which is known to bind with high affinity to the AT(2) receptor (K(i) = 0.62 nM). This comparison showed that, in the compounds with high AT(2) receptor affinity, the guanidino group of the Arg(2) residue and the N-terminal end could access common regions of space that were not accessible to the inactive compound. To examine the importance of the guanidino group for binding, the Arg side chain was removed by substituting Arg(2) for Ala(2) in the analogue having the high affinity. This analogue lacked affinity to AT(2) receptors, which supports the role of the guanidino group in receptor binding.
New benzodiazepine-based gamma-turn mimetics with one or two amino acid side chains were synthesized. The gamma-turn mimetics were incorporated into angiotensin II (Ang II) replacing the Val(3)-Tyr(4)-Ile(5) or Tyr(4)-Ile(5) peptide segments. All of the resulting pseudopeptides displayed high AT(2)/AT(1) receptor selectivity and exhibited AT(2) receptor affinity in the low nanomolar range. Molecular modeling was used to investigate whether the compounds binding to the AT(2) receptor could position important structural elements in common areas. A previously described benzodiazepine-based gamma-turn mimetic with high affinity for the AT(2) receptor was also included in the modeling. It was found that the molecules, although being structurally quite different, could adopt the same binding mode/interaction pattern in agreement with the model hypothesis. The pseudopeptides selected for agonist studies were shown to act as AT(2) receptor agonists being able to induce outgrowth of neurite cells, stimulate p42/p44(mapk), and suppress proliferation of PC12 cells.
Structural alterations in the 2- and 5-positions of the first drug-like selective angiotensin II AT2 receptor agonist (1) have been performed. The imidazole ring system was proven to be a strong determinant for the AT2 selectivity, and with few exceptions all variations gave good AT2 receptor affinities and with retained high AT2/AT1 selectivities. On the contrary to the findings with AT1 receptor agonists, the impact of structural modifications in the 5-position of the AT2 selective compounds were less pronounced regarding activation of the AT2 receptor. The butyloxyphenyl (56) and the propylthienyl (50) derivatives were found to exert a high agonistic effect as deduced from their capacity to induce neurite elongation in neuronal cells, as does angiotensin II.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.