Olive is a long-living perennial species with a wide geographical distribution, showing a large genetic and phenotypic variation in its growing area. There is an urgent need to uncover how olive phenotypic traits and plasticity can change regardless of the genetic background. A two-year study was conducted, based on the analysis of fruit and oil traits of 113 cultivars from five germplasm collections established in Mediterranean Basin countries and Argentina. Fruit and oil traits plasticity, broad‐sense heritability and genotype by environment interaction were estimated. From variance and heritability analyses, it was shown that fruit fresh weight was mainly under genetic control, whereas oleic/(palmitic + linoleic) acids ratio was regulated by the environment and genotype by environment interaction had the major effect on oil content. Among the studied cultivars, different level of stability was observed, which allowed ranking the cultivars based on their plasticity for oil traits. High thermal amplitude, the difference of low and high year values of temperature, negatively affected the oil content and the oleic acid percentage. Information derived from this work will help to direct the selection of cultivars with the highest global fitness averaged over the environments rather than the highest fitness in each environment separately.
The biosynthesis of the phenolic fraction of olive fruits during ripening and the transformations occurring in this moiety during virgin olive oil (VOO) extraction are discussed in this paper. The influence of agronomical factors that can significantly affect the phenolic profile of VOO is also discussed. Particularly, it is worth emphasizing the role of genetic factors, cultivation and climatic conditions such as water availability, atmospheric temperature, altitude, health status of the fruits, alternate bearing in the olive, and some processing factors such as crushing, malaxation time and temperature or volume of water added during milling. Among these parameters, special attention has been paid to genetic factors due to the high variability observed among Olea europaea genotypes for all recorded traits. In this context, interesting experimental results have been obtained with cultivated and wild olive trees, and also with segregating populations resulting from olive breeding programs. To the authors' knowledge, reviews evaluating the influence of the main factors that contribute to the profile of hydrophilic phenols have not been previously published. The discussion concerning olive breeding programs is a major and novel aspect to be emphasized considering recent trends to obtain new olive cultivars that confer better organoleptic properties and better quality to VOO.
Virgin olive oil (VOO) consumption is increasing all over the world due to its excellent organoleptic and nutraceutical properties. These beneficial traits stand from a prominent and well-balanced chemical composition, which is a blend of major (98% of total oil weight) and minor compounds including antioxidants. The main antioxidants are phenolic compounds, which can be divided into lipophilic and hydrophilic phenols. While lipophilic phenols such as tocopherols can be found in other vegetable oils, most hydrophilic phenols in olive oil are exclusive of the Olea europaea species endowing it with a chemotaxonomic interest. This review is focused on VOO antioxidant profile and, particularly, on hydrophilic phenols that are divided into different sub-families such as phenolic acids and alcohols, hydroxy-isochromans, flavonoids, secoiridoids, lignans and pigments. Analytical methods for qualitative and/or quantitative determination of these compounds are assessed. The implementation of efficient sample preparation protocols, separation techniques such as liquid chromatography, GC and capillary electrophoresis, as well as detection techniques such as ultraviolet absorption, fluorescence or MS are critical to succeed in the quality of the results. The effects of hydrophilic phenols on increasing VOO stability, its nutraceutical interest and organoleptic properties are also considered.
The evaluation of the phenolic composition in advanced selections in breeding programs constitutes the first approach for selecting genotypes with improved olive oil quality. In this work, the influence of genotype and ripening index on the phenolic profile of olive oils from advanced selections in comparison to their genitors was studied. Fruit samples were collected in genotypes from crosses between 'Arbequina' × 'Picual', 'Picual' × 'Arbequina' and 'Frantoio' × 'Picual' at five dates from 1 st October to 26 th November 2009. Characterization of the phenolic profile was performed by liquid-liquid extraction with 60:40 (v/v) methanol-water and subsequent chromatographic analysis with absorption and fluorescence detection in a sequential configuration. A dual effect of genotype and fruit ripening on the phenolic profile has been observed with more pronounced genetic influence in both total (34.73% and 20.45%, respectively) and individual phenols (16.99% to 49.25% and 1.58% to 23.77%, respectively). A higher degree of variability between genotypes at early ripening stages was also observed (p < 0.05). The obtained results allow also the identification of selections with high content of total and individual phenols. These results suggest a strategy based on early harvesting of fruits (at the first three ripening indexes) for better comparison and selection of genotypes in further crosses in olive breeding programs aiming at improving the quality of virgin olive oil.Additional key words: cross-breeding; genetic variability; Olea europaea; phenolic composition; ripening index. ResumenPerfil fenólico de aceites de oliva vírgenes obtenidos de selecciones avanzadas en un programa de mejora La evaluación de la composición fenólica en selecciones avanzadas en programas de mejora constituye el primer paso para la selección de genotipos cuyos aceites son de mejor calidad. Se ha estudiado la influencia del genotipo y del índice de madurez en el perfil fenólico del aceite de oliva de selecciones avanzadas en comparación con sus genitores. Se recogieron muestras de genotipos obtenidos de cruzamientos entre 'Arbequina' × 'Picual', 'Picual' × 'Arbequina' y 'Frantoio' × 'Picual' en cinco fechas entre el 1 de octubre y el 26 noviembre de 2009. Se realizó la caracterización del perfil fenólico por extracción líquido-líquido con metanol-agua al 60:40 (v/v) seguido de un análisis cromatográfico con detección por absorción y fluorescencia en una configuración secuencial. Los resultados obtenidos mostraron un mayor grado de variabilidad entre genotipos en las primeras etapas de maduración de los frutos (p < 0.05), así como el efecto de la madurez de los frutos y del genotipo en el perfil fenólico, con una influencia genética más pronunciada tanto para fenoles totales (34,73% and 20,45%, respectivamente) como individuales (entre 16,99% y 49,25% y entre 1,58% y 23,77%, respectivamente). Los resultados obtenidos han permitido la identificación de selecciones con alto contenido en fenoles totales e individuales. Ambos resultados s...
Olive growing in Lebanon plays an important role at both a social and economic level. Nevertheless, the quality of olive oil produced in the country is rarely addressed. In this study, oil content, fatty acid, and phenolic profiles were studied along four different ripening stages for 11 varieties of olives, including two clones of the local variety “Baladi,” in addition to nine foreign varieties (“Ascolana Tenera,” “Bella di Cerignola,” “Itrana,” “Jabaa,” “Kalamata,” “Nabali,” “Salonenque,” “Sigoise,” and “Tanche”). Oil content was determined using the Soxhlet method and Abencor system. Fatty acid composition was determined using a GC-FID, total phenols using spectrophotometry, and the phenolic profile using HPLC-DAD. Results showed that variety, fruit ripening and their interaction have a significant effect on the overall studied oil parameters. Among the studied varieties, “Kalamata” presented the higher oil content on dry matter (OCDM = 48.24%), “Baladi 1” the highest oil content on humid matter (OCHM = 27.86%), and “Tanche” the highest oil industrial yield (OIY = 19.44%). While “Tanche” recorded the highest C18:1 (71.75%), “Ascolana Tenera” showed the highest total phenols (TP = 539 mg GAE/Kg of oil), “Salonenque” the highest oleacein (121.57 mg/Kg), and “Itrana” the highest oleocanthal contents (317.68 mg/Kg). On the other hand, oil content together with C18:2 and C18:0 increased along ripening while C18:1, total phenols and the main individual phenols decreased. Although preliminary, this study highlights the good quality of olive oil produced from both local and foreign varieties growing in Lebanon and encourages further investigations on the characterization and authentication of Lebanese olive oil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.