In this paper, the effect of processes occurring during the sintering of four powder metallurgy steel grades on the resulting properties were investigated. This included three grades prepared from plain iron powder with admixed graphite, one grade alloyed also with elemental copper and another with Fe-Mn-Si masteralloy. One further grade was prepared from Cr-Mo pre-alloyed powder with admixed graphite. The effect of the sintering processes was examined in the temperature range of 700–1300 °C in an inert atmosphere (Ar). In order to study oxygen removal, DTA/TG runs linked with mass spectrometry (MS) as well as C/O elemental analysis were performed. Charpy impact tests and fractography studies were performed to study the effect of the temperature on the formation and growth of sintering contacts. Characterization also included metallography, dimensional change, sintered density, and hardness measurements to describe the dissolution of carbon and alloying elements during the process. Physical properties that were measured were electrical conductivity and coercive force. The results showed that, in all steels, the reduction of oxides that occur during the heating stage plays a key role in the formation and growth of the sintering contacts as well as in the completion of alloying processes. In the chromium alloy steel, the presence of the stable chromium oxides delays these processes up to higher temperatures, while in the other steels that are based on plain iron powder, these processes take place earlier in the heating stage, at lower temperatures. Compared to the standard Fe-C and Fe-Cu-C grades, the Cr-Mo steel requires more sophisticated sintering to ensure oxygen removal, but on the other hand it offers the best properties. The masteralloy variant, finally, can be regarded as a highly attractive compromise between manufacturing requirements, alloy element content, and product properties.
In real industrial environment there is always a difference between ideal theoretical condition and real production condition which bears the risk of producing defective or low quality parts. Getting closer to this ideal situation requires more effort and investment which tends to increase the production cost. In the P/M production lines, the sintering stage is one of the most critical processes. Maintaining an open continuous sintering furnace in an ideal condition is a challenge, and this issue gets more pronounced when using alloy powder containing oxygen-sensitive elements such as Cr or Mn which provide good hardenability at low cost but on the other hand form stable oxides that weaken the sintering contacts if they are not reduced properly. In the present study, using a carbon master alloy as a sintering enhancer in the sintering process of Cr-Mo alloyed powder compacts has been investigated. For clearly depicting the effect of carbon master alloy addition on carbon dissolution and deoxidation, sintering was done in argon as inert atmosphere to avoid other reducing agents such as H2. The physical and mechanical properties of the sintered specimens were investigated, and thermal chemical analysis by DIL/MS and carbon/oxygen measurements were performed. The experiments showed that adding iron-carbon masteralloys promote the sintering processes such as reduction of oxides and carbon dissolution in the early stages of sintering, resulting in better properties after final sintering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.