Purpose The purpose of this paper is to maximize the total demand covered by the established additive manufacturing and distribution centers and maximize the total literal weight assigned to the drones. Design/methodology/approach Disaster management or humanitarian supply chains (HSCs) differ from commercial supply chains in the fact that the aim of HSCs is to minimize the response time to a disaster as compared to the profit maximization goal of commercial supply chains. In this paper, the authors develop a relief chain structure that accommodates emerging technologies in humanitarian logistics into the two phases of disaster management – the preparedness stage and the response stage. Findings Solving the model by the genetic and the cuckoo optimization algorithm (COA) and comparing the results with the ones obtained by The General Algebraic Modeling System (GAMS) clear that genetic algorithm overcomes other options as it has led to objective functions that are 1.6% and 24.1% better comparing to GAMS and COA, respectively. Originality/value Finally, the presented model has been solved with three methods including one exact method and two metaheuristic methods. Results of implementation show that Non-dominated sorting genetic algorithm II (NSGA-II) has better performance in finding the optimal solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.