A pivotal element for metropolitan planning and an essential component describing the urban design is block typology, affecting the pollution concentration. Consequently, this research examines the influence of various urban block typologies on urban pollutant distribution. Four typologies are simulated by ENVI-MET software. These typologies are cubic-shaped, L-shaped, C-shaped, and linear-shaped models. Urban air quality was assessed using relative humidity, temperature, and pollution PM2.5 concentration. The performance of typologies in terms of temperature, relative humidity, and reduction of air permeability is strongly dependent on the blocks' orientation, the block shape's rotation concerning the horizontal and vertical extensions, the height of the blocks, and the type of typology. According to these parameters, the performance is different in each of these studied typologies. Regression models propose a more reliable prediction of PM2.5 when the independent variables are temperature, relative humidity, and height of buildings, among various block typologies. Hence, this article suggests a machine learning approach, and the model evaluation shows that the Polynomial Linear Regression (PLR) model is excellent for measuring air pollution and temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.