We study the throughput and delay characteristics of wireless caching networks, where users are mainly interested in retrieving content stored in the network, rather than in maintaining source-destination communication. Nodes are assumed to be uniformly distributed in the network area. Each node has a limited-capacity content store, which it uses to cache contents. We propose an achievable caching and transmission scheme whereby requesters retrieve content from the caching point which is closest in Euclidean distance. We establish the throughput and delay scaling of the achievable scheme, and show that the throughput and delay performance are orderoptimal within a class of schemes. We then solve the caching optimization problem, and evaluate the network performance for a Zipf content popularity distribution, letting the number of content types and the network size both go to infinity. Finally, we extend our analysis to heterogeneous wireless networks where, in addition to wireless nodes, there are a number of base stations uniformly distributed at random in the network area. We show that in order to achieve a better performance in a heterogeneous network in the order sense, the number of base stations needs to be greater than the ratio of the number of nodes to the number of content types. Furthermore, we show that the heterogeneous network does not yield performance advantages in the order sense if the Zipf content popularity distribution exponent exceeds 3/2.
Motivated by applications to delivery of dynamically updated, but correlated data in settings such as content distribution networks, and distributed file sharing systems, we study a single source multiple destination network coded multicast problem in a cache-aided network. We focus on models where the caches are primarily located near the destinations, and where the source has no cache. The source observes a sequence of correlated frames, and is expected to do frame-by-frame encoding with no access to prior frames. We present a novel scheme that shows how the caches can be advantageously used to decrease the overall cost of multicast, even though the source encodes without access to past data. Our cache design and update scheme works with any choice of network code designed for a corresponding cache-less network, is largely decentralized, and works for an arbitrary network. We study a convex relation of the optimization problem that results form the overall cost function. The results of the optimization problem determines the rate allocation and caching strategies. Numerous simulation results are presented to substantiate the theory developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.