Purpose One of the best methods to improve wind turbine aerodynamic performance is modification of the blade’s airfoil. The purpose of this paper is to investigate the effects of gurney flap geometry and its oscillation parameters on the pitching NACA0012 airfoil. Design/methodology/approach This numerical solution has been carried out for different cases of gurney flap mounting angles, heights, reduced frequencies and oscillation amplitudes, then the results were compared to each other. The finite volume method was used for the discretization of the governing equations, and the PISO algorithm was used to solve the equations. Also, the “SST” was adopted as the turbulence model in the simulation. Findings In this paper, the different parameters of gurney flap were investigated. The results showed that the best range of gurney flap height are between 1 and 3.2% of chord and the best ratio of lifting to drag coefficient is achieved in gurney flap with an angle of 90° relative to the chord direction. The dynamic stall angle of the airfoil with gurney flap decreases were compared to without gurney flap. Earlier LEV formation can be one of the main reasons for decreasing the dynamic stall angle of the airfoil with gurney flap. Increasing the reduced frequency and oscillation amplitude causes rising of maximum lift coefficient and consequently lift curve slope. Moreover, gurney flap with mounting angle has a lower hinge moment than the gurney flap without mounting angle but with the same vertical axis length. So, there is more complexity in structural design concerning the gurney flap without mounting angle. Practical implications Improving aerodynamic efficiency of airfoils is vital for obtaining more output power in VAWTs. Gurney flaps are one of the best mechanisms to increase the aerodynamic performance of the airfoil and increases the efficiency of VAWTs. Originality/value Investigating the hinge moment on the connection point of the airfoil, gurney flap and try to compare the gurney flap with and without angle.
Purpose Nowadays flaps and winglets are one of the main mechanisms to increase airfoil efficiency. This study aims to investigate the power performance of vertical axis wind turbines (VAWT) that are equipped with diverse gurney flaps. This study could play a crucial role in the design of the VAWT in the future. Design/methodology/approach In this paper, the two-dimensional computational fluid dynamics simulation is used. The second-order finite volume method is used for the discretization of the governing equations. Findings The results show that the gurney flap enhances the power coefficient at the low range of tip speed ratio (TSR). When an angled and standard gurney flap case has the same aerodynamic performance, an angled gurney flap case has a lower hinge moment on the junction of airfoil and gurney flap which shows the structural excellence of this case. In all gurney flap cases, the power coefficient increases by an average of 20% at the TSR range of 0.6 to 1.8. The gurney flap cases do not perform well at the high TSR range and the results show a lower amount of power coefficient compare to the clean airfoil. Originality/value The angled gurney flap which has the structural advantage and is deployed to the pressure side of the airfoil improves the efficiency of VAWT at the low and medium range of TSR. This study recommends using a controllable gurney flap which could be deployed at a certain amount of TSR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.