The recent PlanetScope constellation (130+ satellites currently in orbit) has shifted the high spatial resolution imaging into a new era by capturing the Earth’s landmass including inland waters on a daily basis. However, studies on the aquatic-oriented applications of PlanetScope imagery are very sparse, and extensive research is still required to unlock the potentials of this new source of data. As a first fully physics-based investigation, we aim to assess the feasibility of retrieving bathymetric and water quality information from the PlanetScope imagery. The analyses are performed based on Water Color Simulator (WASI) processor in the context of a multitemporal analysis. The WASI-based radiative transfer inversion is adapted to process the PlanetScope imagery dealing with the low spectral resolution and atmospheric artifacts. The bathymetry and total suspended matter (TSM) are mapped in the relatively complex environment of Venice lagoon during two benchmark events: The coronavirus disease 2019 (COVID-19) lockdown and an extreme flood occurred in November 2019. The retrievals of TSM imply a remarkable reduction of the turbidity during the lockdown, due to the COVID-19 pandemic and capture the high values of TSM during the flood condition. The results suggest that sizable atmospheric and sun-glint artifacts should be mitigated through the physics-based inversion using the surface reflectance products of PlanetScope imagery. The physics-based inversion demonstrated high potentials in retrieving both bathymetry and TSM using the PlanetScope imagery.
Remote mapping of bathymetry can play a key role in gaining spatial and temporal insight into fluvial processes, ranging from hydraulics and morphodynamics to habitat conditions. This research introduces Multiple Optimal Depth Predictors Analysis (MODPA), which combines previously developed depth predictors along with additional predictors derived from the intensity component of the HSI color space transformation. MODPA empirically selects a set of optimal predictors among all candidates utilizing partial least squares (PLS), stepwise, or principal component (PC) regression models. The primary focus of this study was on shallow (< 1 m deep) and clearly flowing streams where substrate variability could have a pronounced effect on depth retrieval. Spectroscopic experiments were performed under controlled conditions in a hydraulic laboratory to examine the robustness of bathymetry models with respect to changes in bottom type. Further, simulations from radiative transfer modeling were used to extend the analysis by isolating the effect of inherent optical properties (IOPs) and by investigating the performance of bathymetry models in optically complex and deeper streams. The bathymetry of the Sarca River, a shallow river in the Italian Alps, was mapped using a WorldView-2 (WV-2) image, for which we evaluated the atmospheric compensation (AComp) product. Results indicated the greater robustness of multiplepredictor models particularly MODPA rather than single-predictor models, such as Optimal Band Ratio
A new era of spaceborne hyperspectral imaging has just begun with the recent availability of data from PRISMA (PRecursore IperSpettrale della Missione Applicativa) launched by the Italian space agency (ASI). There has been pre-launch optimism that the wealth of spectral information offered by PRISMA can contribute to a variety of aquatic science and management applications. Here, we examine the potential of PRISMA level 2D images in retrieving standard water quality parameters, including total suspended matter (TSM), chlorophyll-a (Chl-a), and colored dissolved organic matter (CDOM) in a turbid lake (Lake Trasimeno, Italy). We perform consistency analyses among the aquatic products (remote sensing reflectance (Rrs) and constituents) derived from PRISMA and those from Sentinel-2. The consistency analyses are expanded to synthesized Sentinel-2 data as well. By spectral downsampling of the PRISMA images, we better isolate the impact of spectral resolution in retrieving the constituents. The retrieval of constituents from both PRISMA and Sentinel-2 images is built upon inverting the radiative transfer model implemented in the Water Color Simulator (WASI) processor. The inversion involves a parameter (gdd) to compensate for atmospheric and sun-glint artifacts. A strong agreement is indicated for the cross-sensor comparison of Rrs products at different wavelengths (average R ≈ 0.87). However, the Rrs of PRISMA at shorter wavelengths (<500 nm) is slightly overestimated with respect to Sentinel-2. This is in line with the estimates of gdd through the inversion that suggests an underestimated atmospheric path radiance of PRISMA level 2D products compared to the atmospherically corrected Sentinel-2 data. The results indicate the high potential of PRISMA level 2D imagery in mapping water quality parameters in Lake Trasimeno. The PRISMA-based retrievals agree well with those of Sentinel-2, particularly for TSM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.