Introduction The study of abnormal aggregation of proteins in different tissues of the body has recently earned great attention from researchers in various fields of science. Concerning neurological diseases, for instance, the accumulation of amyloid fibrils can contribute to Parkinson’s disease, a progressively severe neurodegenerative disorder. The most prominent features of this disease are the degeneration of neurons in the substantia nigra and accumulation of α-synuclein aggregates, especially in the brainstem, spinal cord, and cortical areas. Dopamine replacement therapies and other medications have reduced motor impairment and had positive consequences on patients’ quality of life. However, if these medications are stopped, symptoms of the disease will recur even more severely. Therefore, the improvement of therapies targeting more basic mechanisms like prevention of amyloid formation seems to be critical. It has been shown that the interactions between monolayers like graphene and amyloids could prevent their fibrillation. Methods For the first time, the impact of four types of last-generation graphene-based nanostructures on the prevention of α-synuclein amyloid fibrillation was investigated in this study by using molecular dynamics simulation tools. Results Although all monolayers were shown to prevent amyloid fibrillation, nitrogen-doped graphene (N-Graphene) caused the most instability in the secondary structure of α-synuclein amyloids. Moreover, among the four monolayers, N-Graphene was shown to present the highest absolute value of interaction energy, the lowest contact level of amyloid particles, the highest number of hydrogen bonds between water and amyloid molecules, the highest instability caused in α-synuclein particles, and the most significant decrease in the compactness of α-synuclein protein. Discussion Ultimately, it was concluded that N-Graphene could be the most effective monolayer to disrupt amyloid fibrillation, and consequently, prevent the progression of Parkinson’s disease.
Nanotechnology based drug delivery systems for cancer therapy have been the topic of interest for many researchers and scientists. In this research, we have studied the pH sensitive co-adsorption and release of doxorubicin (DOX) and paclitaxel (PAX) by carbon nanotube (CNT), fullerene, and graphene oxide (GO) in combination with N-isopropylacrylamide (PIN). This simulation study has been performed by use of molecular dynamics. Interaction energies, hydrogen bond, and gyration radius were investigated. Results reveal that, compared with fullerene and GO, CNT is a better carrier for the co-adsorption and co-release of DOX and PAX. It can adsorb the drugs in plasma pH and release it in vicinity of cancerous tissues which have acidic pH. Investigating the number of hydrogen bonds revealed that PIN created many hydrogen bonds with water resulting in high hydrophilicity of PIN, hence making it more stable in the bloodstream while preventing from its accumulation. It is also concluded from this study that CNT and PIN would make a suitable combination for the delivery of DOX and PAX, because PIN makes abundant hydrogen bonds and CNT makes stable interactions with these drugs.
Background: One of the underlying mechanisms of Parkinson’s disease is the aggregation of α-synuclein proteins, including amyloids and Lewy bodies in the brain. Aim: To study the inhibitory effect of doped carbon nanotubes (CNTs) on amyloid aggregation. Materials & methods: Molecular dynamics tools were utilized to simulate the influence of CNTs doped with phosphorus, nitrogen and bromine and nitrogen on the formation of α-synuclein amyloid. Results: The CNTs exhibited strong interactions with α-synuclein, with phosphorus-doped CNTs having the most substantial interactions. Conclusion: Doped-CNTs, especially phosphorus-doped carbon nanotube could effectively prevent α-synuclein amyloid formation, thus, it could be considered as a potential treatment for Parkinson’s disease. However, further in vitro and clinical investigations are required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.