Due to importance of the quality of treated water as a drastic parameter in peoples life and engineering problems, numerous experimental and semi-experimental models were recently used by water and environmental engineers in order to estimate the quality of water. Between the used models, Artificial Neural Network (ANN) approach as an advantageous black box model was showed great authority in engineering sciences in general and in water engineering in particular. In this study, an ANN-based method was utilized to model the quality of the potable water parameters. To evaluate the model, the water quality data sets of Zarrineh Rood water treatment plant before and after treatment were used. After the statistical analysis on the recorded daily data sets, they were divided into calibration and verification sub-sets. In this paper the measured heat, PH, opacity, total hardness, and the level of calcium before the treatment process were considered as input variables of the model and the quantity of Total Dissolved Solids (TDS) and Electrical Conductivity (EC) after treatment were considered as output neurons of ANN. To have better interpretation about the model efficiency, the outcomes were compared with other classical and practical models and the results proved high merit of ANN in predicting the parameters of treated water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.