Approximately one-third of Lassa virus (LASV)-infected patients develop sensorineural hearing loss (SNHL) in the late stages of acute disease or in early convalescence. With 500,000 annual cases of Lassa fever (LF), LASV is a major cause of hearing loss in regions of West Africa where LF is endemic. To date, no animal models exist that depict the human pathology of LF with associated hearing loss. Here, we aimed to develop an animal model to study LASV-induced hearing loss using human isolates from a 2012 Sierra Leone outbreak. We have recently established a murine model for LF that closely mimics many features of human disease. In this model, LASV isolated from a lethal human case was highly virulent, while the virus isolated from a nonlethal case elicited mostly mild disease with moderate mortality. More importantly, both viruses were able to induce SNHL in surviving animals. However, utilization of the nonlethal, human LASV isolate allowed us to consistently produce large numbers of survivors with hearing loss. Surviving mice developed permanent hearing loss associated with mild damage to the cochlear hair cells and, strikingly, significant degeneration of the spiral ganglion cells of the auditory nerve. Therefore, the pathological changes in the inner ear of the mice with SNHL supported the phenotypic loss of hearing and provided further insights into the mechanistic cause of LF-associated hearing loss. IMPORTANCESensorineural hearing loss is a major complication for LF survivors. The development of a small-animal model of LASV infection that replicates hearing loss and the clinical and pathological features of LF will significantly increase knowledge of pathogenesis and vaccine studies. In addition, such a model will permit detailed characterization of the hearing loss mechanism and allow for the development of appropriate diagnostic approaches and medical care for LF patients with hearing impairment.
Lassa fever (LF) is a potentially lethal human disease that is caused by the arenavirus Lassa virus (LASV). Annually, around 300,000 infections with up to 10,000 deaths occur in regions of Lassa fever endemicity in West Africa. Here we demonstrate that mice lacking a functional STAT1 pathway are highly susceptible to infection with LASV and develop lethal disease with pathology similar to that reported in humans.
The New World arenavirus Junin virus (JUNV) is the causative agent of Argentine hemorrhagic fever (AHF), a potentially deadly disease endemic to central regions of Argentina. The live-attenuated Candid #1 (Can) strain of JUNV is currently used to vaccinate the human population at risk. However, the mechanism of attenuation of this strain is still largely unknown. Therefore, the identification and functional characterization of viral genetic determinants dictating JUNV virulence or attenuation would significantly improve the understanding of the mechanisms underlying AHF and facilitate the development of novel, more effective, and safer vaccines. Here, we utilized a reverse genetics approach to generate recombinant JUNV ( A rgentine hemorrhagic fever (AHF), a severe human disease caused by the New World arenavirus Junin virus (JUNV), is clinically characterized by hemorrhagic manifestations and central nervous system (CNS) involvement (1). The incubation period of AHF is usually from 6 to 14 days, followed by the onset of fever with a flu-like syndrome that is considered to be the first day of clinical AHF. Based on the clinical symptoms, the severity of the neurological involvement, and disease outcome, patients are grouped into mild, moderate, and severe clinical forms (2). Patients with severe forms of AHF present with marked CNS manifestations, including areflexia, muscular hypotonia, ataxia, seizures, and coma. Fatal cases are commonly associated with a terminal shock syndrome; superimposed bacterial infections can also be observed (3). Leucopenia and thrombocytopenia are detected during the first and second week after the onset of symptoms. The most frequent hemorrhagic manifestations are petechiae in the mouth and the axillary region and bleeding of the gums. Less common manifestations are epistaxis, hematuria, metrorrhagia, hemoptysis, and gastrointestinal hemorrhages (4). The mortality rates can be up to 30% in cases without specific treatment.Guinea pigs infected with JUNV reproduce most of the symp-
Machupo virus (MACV) is the etiological agent of Bolivian hemorrhagic fever (BHF), a reemerging and neglected tropical disease associated with high mortality. The prototypical strain of MACV, Carvallo, was isolated from a human patient in 1963, but minimal in vitro and in vivo characterization has been reported. To this end, we utilized reverse genetics to rescue a pathogenic MACV from cloned cDNAs. The recombinant MACV (rMACV) had in vitro growth properties similar to those of the parental MACV. Both viruses caused similar disease development in alpha/beta and gamma interferon receptor knockout mice, including neurological disease development and high mortality. In addition, we have identified a novel murine model with mortality and neurological disease similar to BHF disease reported in humans and nonhuman primates.
Machupo virus (MACV) is the causative agent of Bolivian hemorrhagic fever. Our previous study demonstrated that a MACV strain with a single amino acid substitution (F438I) in the transmembrane domain of glycoprotein is attenuated but genetically unstable in mice. MACV is closely related to Junin virus (JUNV), the causative agent of Argentine hemorrhagic fever. Others and our group have identified the glycoprotein to be the major viral factor determining JUNV attenuation. In this study, we tested the compatibility of the glycoprotein of the Candid#1 live-attenuated vaccine strain of JUNV in MACV replication and its ability to attenuate MACV in vivo. Recombinant MACV with the Candid#1 glycoprotein (rMACV/Cd#1-GPC) exhibited growth properties similar to those of Candid#1 and was genetically stable in vitro. In a mouse model of lethal infection, rMACV/Cd#1-GPC was fully attenuated, more immunogenic than Candid#1, and fully protective against MACV infection. Therefore, the MACV strain expressing the glycoprotein of Candid#1 is safe, genetically stable, and highly protective against MACV infection in a mouse model. IMPORTANCECurrently, there are no FDA-approved vaccines and/or treatments for Bolivian hemorrhagic fever, which is a fatal human disease caused by MACV. The development of antiviral strategies to combat viral hemorrhagic fevers, including Bolivian hemorrhagic fever, is one of the top priorities of the Implementation Plan of the U.S. Department of Health and Human Services Public Health Emergency Medical Countermeasures Enterprise. Here, we demonstrate for the first time that MACV expressing glycoprotein of Candid#1 is a safe, genetically stable, highly immunogenic, and protective vaccine candidate against Bolivian hemorrhagic fever.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.