One of the goals of this research was to develop an electrochemical sensor that had the ability to determine the target analyte and was both cheap and non-toxic. Another goal was to influence the reduction of electronic waste. In accordance with these, a graphite rod from zinc-carbon batteries was used to prepare an electrochemical sensor for the determination of L-tryptophan in Britton–Robinson buffer solution. Two electrochemical methods were used in the experimental research, differential pulse voltammetry and cyclic voltammetry. The effect of different parameters, including the pH value of supporting solution, scan rate, as well as the concentration of L-tryptophan on the current response, was studied. The pH value of Britton–Robinson buffer influenced the intensity of L-tryptophan oxidation peak, as well as the peak potential. The intensity of the current response was the highest at pH 4.0, while the peak potential value became lower as the pH increased, indicating that protons also participated in the redox reaction. Based on the obtained data, electrochemical oxidation of L-tryptophan at the graphite electrode was irreversible, two electron/two proton reaction. In addition, it was observed that the oxidation peak increased as the scan rate increased. According to the obtained electrochemical data, it was suggested that the oxidation of L-tryptophan was mixed controlled by adsorption and diffusion. The linear correlation between oxidation peak and L-tryptophan concentration was investigated in the range 5.0–150.0 µM and the obtained values of limit of detection and limit of quantification were 1.73 µM and 5.78 µM, respectively. Also, the prepared electrochemical sensor was successful in determination of target analyte in milk and apple juice samples.
The effect of purine (concentration range of 1.00 × 10−6–1.00 × 10−2 M) on the behavior of copper in a 0.5 M Na2SO4 solution (pH 7 and pH 9) was studied using the open circuit potential measurement, potentiodynamic polarization, and chronoamperometry. Potentiodynamic polarization shows that purine acts as a copper corrosion inhibitor in both alkaline and neutral sulfate solutions. The efficiency of inhibition increases as the purine concentration increases. Chronoamperometric results follow the same trend as the results of potentiodynamic polarization. The inhibition effect can also be observed visually by microscopic examination of the electrode surface. Purine is adsorbed on copper surface according to the Langmuir adsorption isotherm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.