This paper presents the design, development and construction of a flight test stand for a quadrotor UAV. As opposed to alternate forms of UAV, the power plant in the case of the quadrotor serves a dual purpose of control and propulsion. Since control and propulsion are coupled, the power plant (BLDC motor coupled with propeller) was studied in detail using a black box structure. Extractions of motor parameters in previous studies used traditional BLDC motor equations and propeller theory however the accuracy achievable and confidence in the extracted parameters remained questionable. The developed data acquisition process served to satisfy this need by the construction of a test bench that allows for the extraction of the unknown parameters instilling confidence in the modelling process. The established relationships are then used as inputs into a developed six degree of freedom Euler based mathematical model. A mission profile was constructed with distinct phases of which the mathematical model was used to simulate. Each phase in the mission profile excited different modes of the quadrotor dynamics creating an ideal simulation environment in which changes can be implemented and studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.