The effect of quasi-exponentially decreasing film thicknesses of thin poly-para-xylylene (PPX-N) coatings inside narrow tubes or micro scaled gaps is well known and has been discussed by many authors since the late 1970s. However, for technical applications it is often necessary to provide a longitudinal homogeneous film thickness to ensure the constant properties that are required. In a previous work, it was shown, in principle and for the first time, that a temperature gradient along the tube will effectively counteract the longitudinal decreasing film thickness of the PPX-N coating of the interior wall of a capillary. Therefore, this effect is discussed in theory and the provided model is verified by experiments. Our prediction of a required sticking coefficient curve yields experimentally measured homogeneous film thicknesses and shows a good agreement with the given prognosis. Further, it is shown in theory that there is a maximum achievable homogeneous film thickness in the tube in comparison to a blank surface, which can be understood as a coating efficiency for this type of deposition.
Electrochemical metallization (ECM) cells are based on the principle of voltage controlled formation or dissolution of a nanometer-thin metallic conducting filament (CF) between two electrodes separated by an insulating material, e.g. an oxide. The lifetime of the CF depends on factors such as materials and biasing. Depending on the lifetime of the CF - from microseconds to years – ECM cells show promising properties for use in neuromorphic circuits, for in-memory computing, or as selectors and memory cells in storage applications. For enabling those technologies with ECM cells, the lifetime of the CF has to be controlled. As various authors connect the lifetime with the morphology of the CF, the key parameters for CF formation have to be identified. In this work, we present a 2D axisymmetric physical continuum model that describes the kinetics of volatile and non-volatile ECM cells, as well as the morphology of the CF. It is shown that the morphology depends on both the amplitude of the applied voltage signal and CF-growth induced mechanical stress within the oxide layer. The model is validated with previously published kinetic measurements of non-volatile Ag/SiO2/Pt and volatile Ag/HfO2/Pt cells and the simulated CF morphologies are consistent with previous experimental CF observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.