The molecules of life were created by a continuous physicochemical process on an early Earth. In this hadean environment, chemical transformations were driven by fluctuations of the naturally given physical parameters established for example by wet–dry cycles. These conditions might have allowed for the formation of (self)-replicating RNA as the fundamental biopolymer during chemical evolution. The question of how a complex multistep chemical synthesis of RNA building blocks was possible in such an environment remains unanswered. Here we report that geothermal fields could provide the right setup for establishing wet–dry cycles that allow for the synthesis of RNA nucleosides by continuous synthesis. Our model provides both the canonical and many ubiquitous non-canonical purine nucleosides in parallel by simple changes of physical parameters such as temperature, pH and concentration. The data show that modified nucleosides were potentially formed as competitor molecules. They could in this sense be considered as molecular fossils.
Cyclic dinucleotides are second messengers in the cyclic
GMP–AMP
synthase (cGAS)–stimulator of interferon genes (STING) pathway,
which plays an important role in recognizing tumor cells and viral
or bacterial infections. They bind to the STING adaptor protein and
trigger expression of cytokines via TANK binding kinase 1 (TBK1)/interferon
regulatory factor 3 (IRF3) and inhibitor of nuclear factor-κB
(IκB) kinase (IKK)/nuclear factor-κB (NFκB) signaling
cascades. In this work, we describe an enzymatic preparation of 2′–5′,3′–5′-cyclic
dinucleotides (2′3′CDNs) with use of cyclic GMP–AMP
synthases (cGAS) from human, mouse, and chicken. We profile substrate
specificity of these enzymes by employing a small library of nucleotide-5′-triphosphate
(NTP) analogues and use them to prepare 33 2′3′CDNs.
We also determine affinity of these CDNs to five different STING haplotypes
in cell-based and biochemical assays and describe properties needed
for their optimal activity toward all STING haplotypes. Next, we study
their effect on cytokine and chemokine induction by human peripheral
blood mononuclear cells (PBMCs) and evaluate their cytotoxic effect
on monocytes. Additionally, we report X-ray crystal structures of
two new CDNs bound to STING protein and discuss structure–activity
relationship by using quantum and molecular mechanical (QM/MM) computational
modeling.
Phosphatidylinositol 4-kinase IIIβ is a cellular lipid kinase pivotal to pathogenesis of various RNA viruses. These viruses hijack the enzyme in order to modify the structure of intracellular membranes and use them for the construction of functional replication machinery. Selective inhibitors of this enzyme are potential broad-spectrum antiviral agents, as inhibition of this enzyme results in the arrest of replication of PI4K IIIβ-dependent viruses. Herein, we report a detailed study of novel selective inhibitors of PI4K IIIβ, which exert antiviral activity against a panel of single-stranded positive-sense RNA viruses. Our crystallographic data show that the inhibitors occupy the binding site for the adenine ring of the ATP molecule and therefore prevent the phosphorylation reaction.
Cyclic dinucleotides (CDNs) are second messengers that bind to the stimulator of interferon genes (STING) and trigger the expression of type I interferons and proinflammatory cytokines. Here we evaluate the activity of 3′,3′-c-di(2′F,2′dAMP) and its phosphorothioate analogues against five STING allelic forms in reporter-cell-based assays and rationalize our findings with X-ray crystallography and quantum mechanics/molecular mechanics calculations. We show that the presence of fluorine in the 2′ position of 3′,3′-c-di(2′F,2′dAMP) improves its activity not only against the wild type (WT) but also against REF and Q STING. Additionally, we describe the synthesis of the acyloxymethyl and isopropyloxycarbonyl phosphoester prodrugs of CDNs. Masking the negative charges of the CDNs results in an up to a 1000-fold improvement of the activities of the prodrugs relative to those of their parent CDNs. Finally, the uptake and intracellular cleavage of pivaloyloxymethyl prodrugs to the parent CDN is rapid, reaching a peak intracellular concentration within 2 h.
Phosphatidylinositol 4-kinase IIIβ (PI4KB) is indispensable for the replication of various positive-sense single stranded RNA viruses, which hijack this cellular enzyme to remodel intracellular membranes of infected cells to set up the functional replication machinery. Therefore, the inhibition of this PI4K isoform leads to the arrest of viral replication. Here, we report on the synthesis of novel PI4KB inhibitors, which were rationally designed based on two distinct structural types of inhibitors that bind in the ATP binding side of PI4KB. These "hybrids" not only excel in outstanding inhibitory activity but also show high selectivity to PI4KB compared to other kinases. Thus, these compounds exert selective nanomolar or even subnanomolar activity against PI4KB as well as profound antiviral effect against hepatitis C virus, human rhinovirus, and coxsackievirus B3. Our crystallographic analysis unveiled the exact position of the side chains and explains their extensive contribution to the inhibitory activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.