Cyclic dinucleotides are second messengers in the cyclic
GMP–AMP
synthase (cGAS)–stimulator of interferon genes (STING) pathway,
which plays an important role in recognizing tumor cells and viral
or bacterial infections. They bind to the STING adaptor protein and
trigger expression of cytokines via TANK binding kinase 1 (TBK1)/interferon
regulatory factor 3 (IRF3) and inhibitor of nuclear factor-κB
(IκB) kinase (IKK)/nuclear factor-κB (NFκB) signaling
cascades. In this work, we describe an enzymatic preparation of 2′–5′,3′–5′-cyclic
dinucleotides (2′3′CDNs) with use of cyclic GMP–AMP
synthases (cGAS) from human, mouse, and chicken. We profile substrate
specificity of these enzymes by employing a small library of nucleotide-5′-triphosphate
(NTP) analogues and use them to prepare 33 2′3′CDNs.
We also determine affinity of these CDNs to five different STING haplotypes
in cell-based and biochemical assays and describe properties needed
for their optimal activity toward all STING haplotypes. Next, we study
their effect on cytokine and chemokine induction by human peripheral
blood mononuclear cells (PBMCs) and evaluate their cytotoxic effect
on monocytes. Additionally, we report X-ray crystal structures of
two new CDNs bound to STING protein and discuss structure–activity
relationship by using quantum and molecular mechanical (QM/MM) computational
modeling.
Cyclic dinucleotides (CDNs) are second messengers that activate stimulator of interferon genes (STING). The cGAS-STING pathway plays a promising role in cancer immunotherapy. Here, we describe the synthesis of CDNs containing 7-substituted 7-deazapurine moiety. We used mouse cyclic GMP−AMP synthase and bacterial dinucleotide synthases for the enzymatic synthesis of CDNs. Alternatively, 7-(het)aryl 7-deazapurine CDNs were prepared by Suzuki−Miyaura cross-couplings. New CDNs were tested in biochemical and cell-based assays for their affinity to human STING. Eight CDNs showed better activity than 2′3′-cGAMP, the natural ligand of STING. The effect on cytokine and chemokine induction was also evaluated. The best activities were observed for CDNs bearing large aromatic substituents that point above the CDN molecule. We solved four X-ray structures of complexes of new CDNs with human STING. We observed π−π stacking interactions between the aromatic substituents and Tyr240 that are involved in the stabilization of CDN-STING complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.