Abstract. Targeted Hypernym Discovery (THD) performs unsupervised classification of entities appearing in text. A hypernym mined from the free-text of the Wikipedia article describing the entity is used as a class. The type as well as the entity are cross-linked with their representation in DBpedia, and enriched with additional types from DBpedia and YAGO knowledge bases providing a semantic web interoperability. The system, available as a web application and web service at entityclassifier.eu, currently supports English, German and Dutch.
Modelling and understanding various contexts of users is important to enable personalised selection of Web APIs in directories such as Programmable Web. Currently, relationships between users and Web APIs are not clearly understood and utilized by existing selection approaches. In this paper, we present a semantic model of a Web API directory graph that captures relationships such as Web APIs, mashups, developers, and categories. We describe a novel configurable graph-based method for selection of Web APIs with personalised and temporal aspects. The method allows users to get more control over their preferences and recommended Web APIs while they can exploit information about their social links and preferences. We evaluate the method on a real-world dataset from ProgrammableWeb.com, and show that it provides more contextualised results than currently available popularitybased rankings.
Since its inception in 2007, DBpedia has been constantly releasing open data in RDF, extracted from various Wikimedia projects using a complex software system called the DBpedia Information Extraction Framework (DIEF). For the past 12 years, the software received a plethora of extensions by the community, which positively affected the size and data quality. Due to the increase in size and complexity, the release process was facing huge delays (from 12 to 17 months cycle), thus impacting the agility of the development. In this paper, we describe the new DBpedia release cycle including our innovative release workflow, which allows development teams (in particular those who publish large, open data) to implement agile, cost-efficient processes and scale up productivity. The DBpedia release workflow has been re-engineered, its new primary focus is on productivity and agility, to address the challenges of size and complexity. At the same time, quality is assured by implementing a comprehensive testing methodology. We run an experimental evaluation and argue that the implemented measures increase agility and allow for cost-effective quality-control and debugging and thus achieve a higher level of maintainability. As a result, DBpedia now publishes regular (i.e. monthly) releases with over 21 billion triples with minimal publishing effort
.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.