The increase of chlorophyll fluorescence yield in chloroplasts in a 12.5 Hz train of saturating single turnover flashes and the kinetics of fluorescence yield decay after the last flash have been analyzed. The approximate twofold increase in Fm relative to Fo, reached after 30-40 flashes, is associated with a proportional change in the slow (1-20 s) component of the multiphasic decay. This component reflects the accumulation of a sizeable fraction of QB-nonreducing centers. It is hypothesized that the generation of these centers occurs in association with proton transport across the thylakoid membrane. The data are quantitatively consistent with a model in which the fluorescence quenching of QB-nonreducing centers is reversibly released after second excitation and electron trapping on the acceptor side of Photosystem II.
We have studied spectroscopic properties of the 16kDa red carotenoid protein (RCP), which is closely related to the orange carotenoid protein (OCP) from cyanobacteria. Both proteins bind the same chromophore, the carotenoid 3'-hydroxyechinenone (hECN), and the major difference between the two proteins is lack of the C-terminal domain in the RCP; this results in exposure of part of the carotenoid. The excited-state lifetime of hECN in the RCP is 5.5ps, which is markedly longer than in OCP (3.3ps) but close to 6ps obtained for hECN in organic solvent. This confirms that the binding of hECN to the C-terminal domain in the OCP changes conformation of hECN, thereby altering its excited-state properties. Hydrogen bonds between the C-terminal domain and the carotenoid are also absent in the RCP. This allows the conformation of hECN in the RCP to be similar to that in solution, which results in comparable excited-state properties of hECN in solution. The red-shift of the RCP absorption spectrum is most likely due to aggregation of RCP induced by hydrophobic nature of hECN that, when exposed to buffer, stimulates formation of assemblies minimizing contact of hECN with water. We suggest that the loss of the C-terminal domain renders the protein amphipathic, containing both hydrophobic (the exposed part of hECN) and hydrophilic (N-terminal domain) regions, and may help the RCP to interact with lipid membranes; exposed hECN can penetrate into the hydrophobic environment of the lipid membrane, possibly to provide additional photoprotection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.