Recent studies have identified molecular events characteristic of immunogenic cell death (ICD), including surface exposure of calreticulin (CRT), the heat shock proteins HSP70 and HSP90, the release of high-mobility group box protein 1 (HMGB1) and the release of ATP from dying cells. We investigated the potential of high hydrostatic pressure (HHP) to induce ICD in human tumor cells. HHP induced the rapid expression of HSP70, HSP90 and CRT on the cell surface. HHP also induced the release of HMGB1 and ATP. The interaction of dendritic cells (DCs) with HHP-treated tumor cells led to a more rapid rate of DC phagocytosis, upregulation of CD83, CD86 and HLA-DR and the release of interleukin IL-6, IL-12p70 and TNF-a. DCs pulsed with tumor cells killed by HHP induced high numbers of tumor-specific T cells. DCs pulsed with HHP-treated tumor cells also induced the lowest number of regulatory T cells. In addition, we found that the key features of the endoplasmic reticulum stress-mediated apoptotic pathway, such as reactive oxygen species production, phosphorylation of the translation initiation factor eIF2a and activation of caspase-8, were activated by HHP treatment. Therefore, HHP acts as a reliable and potent inducer of ICD in human tumor cells.
Relationships were established for five sensory methods of oral and nonoral viscosity evaluation between viscosity scores and instrumentally measured dynamic viscosity for model and real Newtonian fluid foods. These relationships were then used to predict the effective shear rates under which the sensory tests were performed. The highest shear rates were predicted for viscosity perception by compression of samples between tongue and palate, and the lowest for pouring the fluid foods from a teaspoon. Mixing with a teaspoon, slurping and swallowing exhibited nearly the same dependencies of apparent shear rates on equivalent instrumental viscosity. All relations were of the hyperbolic type. The resulting relationships between the apprent shear rates and equivalent instrumental viscosity are in good agreement with a similar relationship predicted by Shama and Sherman (1973a) (see Cutler et al. 1983) for oral perception.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.