We analyze statistical properties of the city bus transport in Cuernavaca (Mexico) and show that the bus arrivals display probability distributions conforming those given by the Unitary Ensemble of random matrices.
Many-particle simulations of vehicle interactions have been quite successful in the qualitative reproduction of observed traffic patterns. However, the assumed interactions could not be measured, as human interactions are hard to quantify compared to interactions in physical and chemical systems. We show that progress can be made by generalizing a method from equilibrium statistical physics we learned from random matrix theory. It allows one to determine the interaction potential via distributions of the netto distances s of vehicles. Assuming power-law interactions, we find that driver behavior can be approximated by a forwardly directed 1/s potential in congested traffic, while interactions in free traffic are characterized by an exponent of α ≈ 4. This is relevant for traffic simulations and the assessment of telematic systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.