Due to the growing share of intermittent renewable energy sources (RES), the requirement for flexibility in the energy system is increasing to balance the generation and demand of electricity. It has been well recognized that Combined heat and power plants (CHPs) can contribute towards improved flexibility in the energy system. Thermal energy storage (TES), using hot water as working fluid, is a commonly integrated in CHPs, which allows for decoupling of heat and electricity generation. It has been verified that proper control of the operation of TES can improve the flexibility provided by CHP. The development of advanced control system relies on accurate dynamic modeling of TES. In this work, a onedimension (1D) dynamic model for large scale TES is developed in Dymola, based on mass and energy balances. It is validated against the operational data from a real CHP plant. Results show that the model can capture the dynamic variation in the operation of the TES energy content with maximum deviations of 6.5% from the maximum value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.