Face recognition (FR) under varying lighting conditions is challenging, and exacting illumination invariant features is an effective approach to solve this problem. In this paper, we propose to utilize Discrete Wavelet Transform (DWT) for normalizing the illumination variance in images as well as for feature extraction. Individual stages of the FR system are examined and an attempt is made to improve each stage. A Binary Particle Swarm Optimization (BPSO) based feature selection algorithm is used to search the feature space for the optimal feature subset. Experimental results, obtained by applying the proposed algorithm on YaleB and Color FERET face databases, show that the proposed system outperforms other FR systems. A significant increase in the recognition rate and a substantial reduction in the number of features is observed. Dimensionality reduction obtained is more than 99% for both YaleB and Color FERET databases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.