Covalently functionalized graphene derivatives were synthesized via benchmark reductive routes using graphite intercalation compounds (GICs), in particular KC. We have compared the graphene arylation and alkylation of the GIC using 4-tert-butylphenyldiazonium and bis(4-(tert-butyl)phenyl)iodonium salts, as well as phenyl iodide, n-hexyl iodide, and n-dodecyl iodide, as electrophiles in model reactions. We have put a particular focus on the evaluation of the degree of addition and the bulk functionalization homogeneity (H). For this purpose, we have employed statistical Raman spectroscopy (SRS), and a forefront characterization tool using thermogravimetric analysis coupled with FT-IR, gas chromatography, and mass spectrometry (TGA/FT-IR/GC/MS). The present study unambiguously shows that the graphene functionalization using alkyl iodides leads to the best results, in terms of both the degree of addition and the H. Moreover, we have identified the reversible character of the covalent addition chemistry, even at temperatures below 200 °C. The thermally induced addend cleavage proceeds homolytically, which allows for the detection of dimeric cleavage products by TGA/FT-IR/GC/MS. This dimerization points to a certain degree of regioselectivity, leading to a low sheet homogeneity (H). Finally, we developed this concept by performing the reductive alkylation reaction in monolayer CVD graphene films. This work provides important insights into the understanding of basic principles of reductive graphene functionalization and will serve as a guide in the design of new graphene functionalization concepts.
Single-walled carbon nanotubes (SWCNT) have been covalently cross-linked via a reductive functionalization pathway, utilizing negatively charged carbon nanotubides (KC). We have compared the use of difunctional linkers acting as molecular pillars between the nanotubes, namely, p-diiodobenzene, p-diiodobiphenyl, benzene-4,4'-bis(diazonium), and 1,1'-biphenyl-4,4'-bis(diazonium) salts as electrophiles. We have employed statistical Raman spectroscopy (SRS), a forefront characterization tool consisting of thermogravimetric analysis coupled with gas chromatography and mass spectrometry (TG-GC-MS) and aberration-corrected high-resolution transmission electron microscopy imaging series at 80 kV to unambiguously demonstrate the covalent binding of the molecular linkers. The present study shows that the SWCNT functionalization using iodide derivatives leads to the best results in terms of bulk functionalization homogeneity ( H) and degree of addition. Phenylene linkers yield the highest degree of functionalization, whereas biphenylene units induce a higher surface area with an increase in the thermal stability and an improved electrochemical performance in the oxygen reduction reaction (ORR). This work illustrates the importance of molecular engineering in the design of novel functional materials and provides important insights into the understanding of basic principles of reductive cross-linking of carbon nanotubes.
We present an in‐depth qualitative and quantitative analysis of a reaction between 4‐iodobenzenediazonium tetrafluoroborate and single‐walled carbon nanotubes (SWCNTs) via thermogravimetric analysis coupled with mass spectrometry (TG‐MS) or a gas chromatography and mass spectrometry (TG‐GC‐MS) as well as Raman spectroscopy. We propose a method for precise determination of the degree of functionalization and quantification of physisorbed aromates, detaching around their boiling point, alongside covalently bonded ones (cleavage over 200 °C). While the presence of some side products like phenol‐ or biphenyl species could be excluded, residual surfactant and minor amounts of benzene could be identified. A concentration‐dependent experiment shows that the degree of functionalization increases with the logarithm of the concentration of applied diazonium salt, which can be exploited to precisely adjust the amount of aryl addends on the nanotube sidewall, up to 1 moiety per 100 carbon atoms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.