Ivermectin (IVM) is a drug from the group of anthelmintics used in veterinary and human medicine. Recently, interest in IVM has increased as it has been used for the treatment of some malignant diseases, as well as viral infections caused by the Zika virus, HIV-1 and SARS-CoV-2. The electrochemical behaviour of IVM was investigated using cyclic (CV), differential pulse (DPV) and square wave voltammetry (SWV) at glassy carbon electrode (GCE). IVM showed independent oxidation and reduction processes. The effect of pH and scan rate indicated the irreversibility of all processes and confirmed the diffusion character of oxidation and reduction as an adsorption-controlled process. Mechanisms for IVM oxidation at the tetrahydrofuran ring and reduction of the 1,4-diene structure in the IVM molecule are proposed. The redox behaviour of IVM in a biological matrix (human serum pool) showed a pronounced antioxidant potential similar to that of Trolox during short incubation, whereas a prolonged stay among biomolecules and in the presence of an exogenous pro-oxidant (tert-butyl hydroperoxide, TBH) resulted in a loss of its antioxidant effect. The antioxidant potential of IVM was confirmed by voltametric methodology which is proposed for the first time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.